• 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
  • 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
首页 » 生活常识 » 小学数学微课转化的思想方法(小学数学思想方法)

小学数学微课转化的思想方法(小学数学思想方法)

分类:生活常识 日期:2022-07-20 16:10 浏览:8 次

1.小学数学思想方法有哪些

1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。联系的一种思想方法如直线上的点(数轴)与表示具体的数是一一对应。

如直线上的点(数轴)与表示具体的数是一一对应。2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

知和未知数量变化前后的情况 4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。公式、5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲*1/乙。

公式的变形等,在计算中也常用到甲乙甲乙 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若体现对数学对象的分类及其分类的标准整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。

按能否被 2 整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。的分类有助于学生对知识的梳理和建构。

8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。

小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。

在解应用题中常常借助线段图的直观帮助分析数量关系。助分析数量关系。

10、统计思想方法:统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法:极限思想方法:事物。

2.小学数学中对学生转化思想的培养方法有哪些

转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。

小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。

1.计算的纵向转化

加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减 ← 分数加减 。其中 20以内数的加减计算是基础。如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。多位数计算也同样。

分数加减计算如 7/8+3/8 就是 7个1/8 加3个1/8 ,就是(7+3)个1/8 ,最后也可以看作是20以内数的计算。乘除计算:一位数乘法← 多位数乘法← 小数乘法。一位数乘法口诀是基础,多位数乘法都可以把它归结到一位数乘法。除数是一位数的除法←―多位数除法←-小数除法。除法中除数是一位数除法的计算方法是基础,多位数除法都可以把它归结到一位数除法。 2.计算的横向转化

加法与减法之间可以转化,乘法与除法之间可以转化。几个相同加数连加的和,可以转化成乘法来计算。被减数连续减去几个相同的减数,差为零,可以转化成除法来表示。分数的除法,可以将除数颠倒位置变成乘法进行计算。

3.图形中的转化

面积计算公式的推导可以把长方形面积公式作为基础,其它图形面积公式都可以通过转化变成长方形或平行四边形后得出公式。体积计算公式以长方体的体积计算公式为基础,圆柱体的体积公式的推导也是通过转化为长方体来得出。转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

3.微课在小学数学中的研究方法有哪些

微型校本课题研究见科研

1.观察

研究者用自官辅助工具自发条件自现象社论述进行直接、系统、目、计划考察描述获经验事实种科研(苏霍姆林斯基观察3700名并做详细记录;陈鹤琴用文字摄影像记录808孩童理)

2.调查

通现场考察、观察、调查、问卷、访谈、测量等式收集资料现状作科析规律性认识并提具体工作建议种

3.经验总结

自经验象其进行科筛选析、核实、验证使相关事物认识性升理性研究苏霍姆林斯基曾经说善于析自工作教师才能优秀经验教师

4.文献

文献进行查询、鉴别、整理、析找事物本质属性种研究文献记录知识切载体――文字、图形、符号、声频、视频等等

5.比较

根据定标准某类教育现象进行比研究通揭示其异同找教育现象普遍规律及主要象特殊规律提符合实际情况结论或具体作

6.案

体作研究象通直接或间接调查解其发展变化某些线索特点并据设计实施相应措施促进其发展变化些条件、措施与结间联系认识结论推广般

7.统计

通观察调查实验所收集数据资料进行整理、计算、析解释统计检验原理

8.行研究

由社情景参与者提高自所事社实践理性认识加深实践及某依赖背景理解进行反省式研究

4.小学数学中对学生转化思想的培养方法有哪些

转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。

也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。

小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。

它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。

21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。

1.计算的纵向转化 加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减 ← 分数加减 。其中 20以内数的加减计算是基础。

如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。多位数计算也同样。

分数加减计算如 7/8+3/8 就是 7个1/8 加3个1/8 ,就是(7+3)个1/8 ,最后也可以看作是20以内数的计算。乘除计算:一位数乘法← 多位数乘法← 小数乘法。

一位数乘法口诀是基础,多位数乘法都可以把它归结到一位数乘法。除数是一位数的除法←―多位数除法←-小数除法。

除法中除数是一位数除法的计算方法是基础,多位数除法都可以把它归结到一位数除法。 2.计算的横向转化 加法与减法之间可以转化,乘法与除法之间可以转化。

几个相同加数连加的和,可以转化成乘法来计算。被减数连续减去几个相同的减数,差为零,可以转化成除法来表示。

分数的除法,可以将除数颠倒位置变成乘法进行计算。3.图形中的转化 面积计算公式的推导可以把长方形面积公式作为基础,其它图形面积公式都可以通过转化变成长方形或平行四边形后得出公式。

体积计算公式以长方体的体积计算公式为基础,圆柱体的体积公式的推导也是通过转化为长方体来得出。转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

5.小学数学思想方法有哪些

1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。联系的一种思想方法如直线上的点(数轴)与表示具体的数是一一对应。

如直线上的点(数轴)与表示具体的数是一一对应。2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

知和未知数量变化前后的情况 4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。公式、5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲*1/乙。

公式的变形等,在计算中也常用到甲乙甲乙 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若体现对数学对象的分类及其分类的标准整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。

按能否被 2 整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。的分类有助于学生对知识的梳理和建构。

8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。

小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。

在解应用题中常常借助线段图的直观帮助分析数量关系。助分析数量关系。

10、统计思想方法:统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法:极限思想方法:事物。

小学数学微课转化的思想方法有哪些

相关推荐:
  • 蛋挞皮烤出来有点酸是怎么回事(蛋挞皮有酸味什么原因)
  • 鸡头米煮多久能熟?
  • 做雪媚娘可以只用糯米粉吗(不用糯米粉做雪媚娘)
  • 乒乓球比赛一共打几局赢几局是胜?(乒乓球比赛冠亚军是几局获胜)
  • 马齿苋的功效及作用与主治(马齿苋主治及功效)
上一篇:专利申请资助计到哪个(专利申请的费用计入哪个科目) 下一篇:西安有全日制本科吗(西安有哪些正规全日制学校)

相关推荐

蛋挞皮烤出来有点酸是怎么回事(蛋挞皮有酸味什么原因)
鸡头米煮多久能熟?
做雪媚娘可以只用糯米粉吗(不用糯米粉做雪媚娘)
乒乓球比赛一共打几局赢几局是胜?(乒乓球比赛冠亚军是几局获胜)
马齿苋的功效及作用与主治(马齿苋主治及功效)
卡布达里的蛇(卡布达里的眼镜蛇)
中国第一颗氢弹叫什么名字(中国第一氢弹爆炸视频)
东京奥运会游泳馆的温度是多少?(标准游泳馆的水温)
塑料拖鞋臭味怎么快速去除?(为什么拖鞋有股屎臭味)
桃花满天下最初指的是谁?(桃花满天下)
潮流时尚 写作素材 创新创业
生活常识 策划方案 安全知识
自考专业 家居生活 三农创业
励志故事 时尚穿搭 星座知识
热门分类

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
 蜀ICP备2020033479号-4  Copyright © 2016  学习鸟. 页面生成时间:2.583秒

返回顶部