• 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
  • 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
首页 » 故事 » 励志故事 » 圆周率的典故(圆周率的故事)

圆周率的典故(圆周率的故事)

分类:励志故事 日期:2022-07-08 09:15 浏览:6 次

1.圆周率的故事

从前有一座山,山上有一座寺庙,庙里有一个和尚,和尚名叫尔乐,是个教书先生。和尚酷爱喝酒。有一天,和尚要下山,但是他怕小孩子偷懒不学习,就给了他们一个任务:

背熟圆周率小数点后22位数字。

小孩子们说:“苦杀唔也!”

和尚不记得带他的酒瓶下山了,于是,小孩子们干脆把和尚的酒偷来喝个精光,让他回来的时候没酒喝,气死他!

谁知老和尚来到,不但没有被气死,反而乐翻了天,因为他们编出了这样一个顺口溜来帮助记忆:

山 顶 一 寺 一 壶 酒 尔 乐 苦 杀 唔 把 酒 吃 酒 杀 尔 杀 不 死 乐 尔 乐

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

兀=3.141592653589793238462……

圆周率的典故小故事,历史圆周率这一典故最早见于,历史圆周率这一典故最早

2.求圆周率的历史故事

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.。

圆周率,典故

3.圆周率的故事

3. 山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,遛尔遛死,扇扇刮,扇耳吃酒。

求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。

祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。

在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。

祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。

如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊! 祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”。

除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。

为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。 祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。

实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。

祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。

在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。

祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。

如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊! 祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”。

除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。

为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。 祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。

实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

历史上最马拉松式的人手π值计算,其一是德国的鲁道夫·范·科伊伦(Ludolph van Ceulen),他几乎耗尽了一生的时间,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolphine number;其二是英国的威廉·山克斯(William Shanks),他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。

[12]在谷歌公司2005年的一次公开募股中,共集资四十多亿美元,A股发行数量是14,159,265股,这当然。

4.圆周率的故事

3.1415926 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

山巅一寺一壶酒,尔乐。苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。

4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7

死珊珊,霸占二妻。 救我灵儿吧! 不只要救妻, 一路救三舅, 救三妻。

5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7

我一拎我爸,二拎舅(其实就是撕我舅耳)三拎妻。

8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6

不要溜!司令溜,儿不溜!儿拎爸,久久不溜!

2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8

饿不拎,闪死爸,而我真是饿矣!要吃人肉?吃酒吧!

5.圆周率的小故事 圆周率的小故事

背景:"我"作为一个父亲,对于儿子的堕落,由自暴自弃到想法挽救,最后成功,和 家团圆。。

方法:读音+形状。。

白话+古文。。

(儿子十分堕落)

山颠一寺一壶酒,3.14159

儿乐,苦煞吾。26 535

把酒吃,酒杀儿。897 932

杀不死,乐而乐。384 626

(父亲对儿子放弃希望)

死了算罢了,儿弃沟 43383 279

吾痛儿,白白死已够戚矣,留给山沟沟 502 8841971 69399(这句是我觉得最强的!)

(心疼儿子)

山拐吾腰痛,吾怕儿冻久,凄事久思思。37510 58209 74944

(接下来开始挽救儿子了。。)

吾救儿,山洞拐,不宜留 592 307 816

四邻乐,儿不乐,儿疼爸久久 406 286 20899

爸乐儿不懂,"三思吧!" 86280 348

儿悟,三思而依矣,妻懂乐其久。。 25 34211 70679

一百位over。

6.关于圆周率发现的故事

中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。

他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。

其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。

圆周率的典故

相关推荐:
  • 兰亭序典故(《兰亭序》的故事)
  • 典故落魄(失魂落魄是什么意思,有哪些表现,这个词出自哪里,有何典故)
  • 智字(孔子关于智的故事)
  • 鳞次栉比典故(鳞次栉比,身临其境,周而复始,此起彼伏,引经据典,遍稽群籍,)
  • 成语典故何(有关何的成语故事)
上一篇:有关认真的典故(有关做事认真的名人事例) 下一篇:财务基本公式(会计基础要记得公式有哪些?)

学习鸟网站是免费的综合学习网站,提供各行各业学习资料、学习资讯供大家学习参考,如学习资料/生活百科/各行业论文/中小学作文/实用范文实用文档等等!

故事分类

灵异 爱情
经典 哲理
感人 励志

铜雀台比武典故(铜雀台的典故谁知道)
马氏典故(关于马的典故有哪些?)
蟾光典故(凿壁偷光的典故)
中文学典故(请找出25个中国文学史上的典故)
关于七的典故(那些关于7的所有故事)

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
 蜀ICP备2020033479号-4  Copyright © 2016  学习鸟. 页面生成时间:0.103秒

返回顶部