微生物的代谢调节主要有两种方式:酶合成的调节和酶活性的调节.
酶合成的调节
【酶合成的调节】:微生物细胞内的酶可以分为组成酶和诱导酶两类.组成酶时微生物细胞内一直存在的酶,它们的合成只受遗传物质的控制,而诱导酶则时在环境中存在某种物质的情况下才能够合成的酶.例如,在用葡萄糖和乳糖作碳源的培养基本上培养大肠杆菌,开始时,大肠杆菌只能利用葡萄糖而不能利用乳糖,只有当葡萄糖被消耗完毕以后,大肠杆菌才开始利用乳糖,只有当葡萄糖被消耗完毕以后,大肠杆菌才开始利用乳糖.
酶活性的调节
【酶活性的调节】:微生物还能够通过改变已有酶的催化活性来调节代谢的速率.酶活性发生主要原因时,代谢过程中产生的物质与酶结合,致使酶的结构产生变化.这种调节现象在核苷酸、维生素的合成代谢中十分普遍.
总结
上述两种调节方式时同时存在,并且密切配合、协调作用的.通过对代谢的调节,微生物细胞内一般不会累积大量的代谢产物.
根据生物的进化程度不同,代谢调节大体上可分神经、激素和酶三个水平,而最原始、也最基本的是酶水平的调节。神经和激素水平的调节最终也通过酶起作用。
酶水平代谢调节主要有两种类型:一种是通过激活或抑制酶的催化活性,另一种是通过控制酶合成或降解的量。有下列几种重要方式:
1、别构调节
代谢途径的速率和方向主要依赖调节酶的量和活性,必需的不可逆反应是控制部位。代谢途径中第一个不可逆反应常是重要的控制因素,催化这些关键步骤的酶属于别构酶。这类酶是复杂的寡聚蛋白质,含有好几个亚基,它们除含催化部位外,还含有调节部位。一定的效应物与调节部位结合后可改变酶分子的构象,进而影响其催化活性。对酶的催化活性起激活作用的效应物称作正效应物,起抑制作用的为负效应物。效应物可以是底物、产物、代谢途径的终产物、核苷酸类化合物等。调节分解代谢的别构酶可被正效应物ADP或AMP激活而被负效应物ATP抑制。别构调节是最迅速的代谢调节方式,其中以终产物对代谢序列反应中早期步骤的抑制作用(反馈抑制)最为常见;如大肠杆菌中异亮氨酸抑制催化其合成代谢系列反应第一个步骤的酶。一条代谢途径中的别构酶也可对其他代谢途径的中间物或产物作出反应,不同酶系统的速度能用这种方式互相协调。
2、共价修饰
对酶分子的化学结构进行修饰也可影响酶的催化活性,其中最重要的是侧链羟基的磷酸化。例如,在糖原降解代谢中很重要的糖原磷酸化酶有a、b两种类型。a型有充分的催化活性,b型几乎没有催化活性。b型酶经蛋白激酶的作用在酶分子中某一特定的丝氨酸羟基上引入一个磷酸基,就转变为a型。a型经蛋白磷酸酶水解脱去磷基团又可恢复成低活性的b型。生物可通过蛋白激酶和磷酸酶的作用影响磷酸化酶的活性,进而调节糖原的降解,蛋白激酶的活化又要经过几个步骤。所以,这种调节方式有放大效应,十分敏感;很少的信号物质便可产生迅速而巨大的效应。如肾上腺素刺激糖原的降解。
3、酶量调节
调节酶的合成和分解也受到调控。主要方式是调控酶的合成量。这是激活或阻止酶基因表达的结果。如大肠杆菌通常以葡萄糖为碳源,在培养基中仅有乳糖而无葡萄糖时,乳糖可诱导大肠杆菌产生能分解乳糖为半乳糖和葡萄糖的β-半乳糖苷酶,从而使乳糖得以利用(见操纵子)。高等生物也有这种能力,如在饥饿状态下糖异生途径较活跃,此时该代谢途径中丙酮酸羟化酶的合成量增加了10倍。
4、区域化
真核细胞含有膜包裹着的多种细胞器,使各种酶和酶系被隔离在细胞的不同区域。如糖酵解、戊糖磷酸途径和脂肪酸合成的酶系存在于胞液中;而脂肪酸氧化、三羧酸循环和氧化磷酸化等过程在线粒体中进行。像糖异生和尿素合成这些过程又依赖胞液和线粒体两个区域中的反应相互影响。一些特定分子的命运依赖它们存在于胞液还是线粒体中;因此,它们穿过线粒体内膜的转运常被调节。例如,输入线粒体的脂肪酸比在胞液中酯化或输出的脂肪酸降解得更迅速。
微生物代谢控制育种是指以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节的机制,选择巧妙的技术路线,通过遗传育种技术获得解除或绕过了微生物正常代谢途径的突变株,从而人为地使用有用产物选择性地大量合成积累。代谢控制发酵的关键,取决于微生物代谢调控机制是否被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。代谢控制育种和发酵过程的代谢控制培养是实现这一目标的两的手段,而代谢控制育种则为主要支柱技术。微生物代谢控制育种是集生物化学、微生物学、遗传学、发酵工程、生理学、分子生物学、化学等学科交叉产生的一门工程技术,该技术的广泛应用,导致了氨基酸、核苷酸以及某些次级代谢产物的高产微生物菌株大批的推向生产,大大促进了发酵工业的发展。
微生物代谢控制育种主要是通过控制酶的作用来实现的,因为任何代谢途径都是一系列酶促反应构成的。微生物细胞的代谢调节主要有两种类型,一类是酶活性调节,调节的是已有酶分子的活性,是在酶化学水平上发生的;另一类是酶合成的调节,调节的是酶分子的合成量,这是在遗传学水平上发生的[。利用发酵过程的一些限制因素来促进或控制酶产生的速率及其活性,可以控制发酵过程中不同阶段的反应处于平衡状态,同时也可以使微生物对外界环境的变化作出相应的反应。在细胞内这两种方式单独或协调进行选育,获得突变株,达到改变代谢通路、降低支路代谢终产物的产生或切断支路代谢途径及提高细胞膜的透性,使代谢流向目的产物积累方向进行。代谢控制育种的调节体系主要包括诱导、分解阻遏、分解抑制、反馈阻遏、反馈抑制、细胞膜透性调节等。
微生物代谢控制育种是指以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节的机制,选择巧妙的技术路线,通过遗传育种技术获得解除或绕过了微生物正常代谢途径的突变株,从而人为地使用有用产物选择性地大量合成积累。
代谢控制发酵的关键,取决于微生物代谢调控机制是否被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。代谢控制育种和发酵过程的代谢控制培养是实现这一目标的两的手段,而代谢控制育种则为主要支柱技术。
微生物代谢控制育种是集生物化学、微生物学、遗传学、发酵工程、生理学、分子生物学、化学等学科交叉产生的一门工程技术,该技术的广泛应用,导致了氨基酸、核苷酸以及某些次级代谢产物的高产微生物菌株大批的推向生产,大大促进了发酵工业的发展。微生物代谢控制育种主要是通过控制酶的作用来实现的,因为任何代谢途径都是一系列酶促反应构成的。
微生物细胞的代谢调节主要有两种类型,一类是酶活性调节,调节的是已有酶分子的活性,是在酶化学水平上发生的;另一类是酶合成的调节,调节的是酶分子的合成量,这是在遗传学水平上发生的[。利用发酵过程的一些限制因素来促进或控制酶产生的速率及其活性,可以控制发酵过程中不同阶段的反应处于平衡状态,同时也可以使微生物对外界环境的变化作出相应的反应。
在细胞内这两种方式单独或协调进行选育,获得突变株,达到改变代谢通路、降低支路代谢终产物的产生或切断支路代谢途径及提高细胞膜的透性,使代谢流向目的产物积累方向进行。代谢控制育种的调节体系主要包括诱导、分解阻遏、分解抑制、反馈阻遏、反馈抑制、细胞膜透性调节等。
代谢调节方式
机体存在三级水平的代谢调节,包括细胞水平调节、激素水平调节和以中枢神经系统为主导的整体水平调节。
(一)细胞水平调节主要通过调节关键酶的活性实现,其中通过改变现有酶分子的结构调节酶活性的方式,发生较快。也可通过改变酶的含量影响酶活性,此调节缓慢而持久。对酶结构调节包括酶的变构调节及酶蛋白的化学修饰调。对物质代谢和某些关键酶,两种调节各有作用,相辅相成。
(二)激素水平调节中,激素与靶细胞受体特异结合,将代谢信号转化为细胞内一系列信号转导级联过程,最终表现出激素的生物学效应。激素可分为膜受体激素及胞内受体激素。前者为蛋白质、多肽及儿茶酚胺类激素,具亲水性,需结合膜身体才能将信号跨膜传递入细胞内。后者为疏水性激素,可透过细胞膜与胞内受体(大多在核内)结合,形成二聚体,作为转录因子与DNA上的特定激素反应元件(HRE)结合,以调控该元件调控的特定基因的表达。
(三)整体水平调节是指神经系统通过内分泌腺间接调节代谢和直接影响组织、器官以调节代谢的方式,使机体代谢相对稳定,适应环境改变。饥饿及应急时通过改变多种激素分泌,整体调节引起体内物质代谢的改变。
微生物有着一整套可塑性极强和极精确的代谢调节系统,
以保证上千种酶能
正确无误、
有条不紊地进行极其复杂的新陈代谢反应。
从细胞水平上来看,
微生
物的代谢调节能力要超过复杂的高等动植物。
这是因为,
微生物细胞的体积极小,
而所处的环境条件却十分多变,
每个细胞要在这样复杂的环境条件下求得生存和
发展,
就必须具备一整套发达的代谢调节系统。
在长期进化过程中,
微生物发展
出一整套十分有效的代谢调节方式,巧妙地解决了这一矛盾。
通过代谢调节微生物可最经济地利用其营养物,
合成出能满足自己生长、
繁
殖所需要的一切中间代谢物,
并做到既不缺乏也不剩余任何代谢物的高效
“经济
核算”
正常情况下,微生物代谢产物由于反馈抑制和反馈阻遏是不会大量积累的。
但自然界里常发现一些微生物产生了过量的代谢产物,
这主要是由于这些微生物
代谢机制失调造成的,
在工业发酵上,
可运用遗传的和环境的控制和人为的代谢
调节,使其产物大量积累。
如氨基酸发酵生产就是在代谢调节研究的基础上发展起来的。
目前已经能够
在转录和翻译上控制微生物的代谢,
使微生物工业发酵进入了一个崭新阶段,
即
代谢控制发酵阶段。所谓的代谢控制发酵,就是人为地在
DNA
分子水平上改变
和控制微生物的代谢活动,使目的产物大量生成、积累。
一般改变微生物代谢调节的方法有如下几种
:
第一种
是采用物理化学诱变,获得营养缺陷型
第二种方法是应用抗反馈调节突变法。
第三种就是控制发酵条件,改变细胞的渗透性。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.762秒