• 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
  • 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
首页 » 生活常识 » 确定性数学方法(数学方法包括哪些)

确定性数学方法(数学方法包括哪些)

分类:生活常识 日期:2022-08-31 11:24 浏览:9 次

1.数学方法包括哪些

所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法. 数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性. 数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成. 在中学数学中经常用到的基本数学方法,大致可以分为以下三类: (1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色. (2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛. (3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.。

2.常用的数学解题方法有哪些

数学解题思想方法有哪些

一.数学思想方法总论

高中数学一线牵,代数几何两珠连;

三个基本记心间,四种能力非等闲.

常规五法天天练,策略六项时时变,

精研数学七思想,诱思导学乐无边.

一 线:函数一条主线(贯穿教材始终)

二 珠:代数、几何珠联璧合(注重知识交汇)

三 基:方法(熟) 知识(牢) 技能(巧)

四能力:概念运算(准确)、逻辑推理(严谨)、

空间想象(丰富)、分解问题(灵活)

五 法:换元法、配方法、待定系数法、分析法、归纳法.

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.

七思想:函数方程最重要,分类整合常用到,

数形结合千般好,化归转化离不了;

有限自将无限描,或然终被必然表,

特殊一般多辨证,知识交汇步步高.

二.数学知识方法分论:

集合与逻辑

集合逻辑互表里,子交并补归全集.

对错难知开语句,是非分明即命题;

纵横交错原否逆,充分必要四关系.

真非假时假非真,或真且假运算奇.

函数与数列

数列函数子母胎,等差等比自成排.

数列求和几多法?通项递推思路开;

变量分离无好坏,函数复合有内外.

同增异减定单调,区间挖隐最值来.

三角函数

三角定义比值生,弧度互化实数融;

同角三类善诱导,和差倍半巧变通.

解前若能三平衡,解后便有一脉承;

角值计算大化小,弦切相逢异化同.

方程与不等式

函数方程不等根,常使参数范围生;

一正二定三相等,均值定理最值成.

参数不定比大小,两式不同三法证;

等与不等无绝对,变量分离方有恒.

解析几何

联立方程解交点,设而不求巧判别;

韦达定理表弦长,斜率转化过中点.

选参建模求轨迹,曲线对称找距离;

动点相关归定义,动中求静助解析.

立体几何

多点共线两面交,多线共面一法巧;

空间三垂优弦大,球面两点劣弧小.

线线关系线面找,面面成角线线表;

等积转化连射影,能割善补架通桥.

排列与组合

分步则乘分类加,欲邻需捆欲隔插;

有序则排无序组,正难则反排除它.

元素重复连乘法,特元特位你先拿;

平均分组阶乘除,多元少位我当家.

二项式定理

二项乘方知多少,万里源头通项找;

展开三定项指系,组合系数杨辉角.

整除证明底变妙,二项求和特值巧;

两端对称谁最大?主峰一览众山小.

概率与统计

概率统计同根生,随机发生等可能;

互斥事件一枝秀,相互独立同时争.

样本总体抽样审,独立重复二项分;

随机变量分布列,期望方差论伪真.

3.数学常用的数学思想方法有哪些

数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.

6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。

7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,

扩展资料:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。

参考资料:百度百科-数学思想

4.一般的数学思想方法有哪些

1 函数思想

把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。

2 数形结合思想

把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。

3 整体思想

整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

4 转化思想

在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。

5 类比思想

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。

扩展资料:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。

它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。

在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。

我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系。

实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

引起分类讨论的原因主要是以下几个方面:

① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。

③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

参考资料:搜狗百科-数学思想方法

5.数学的计算方法有哪些

1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数

3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数*因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数

小学数学图形计算公式

1、正方形:C周长 S面积 a边长 周长=边长*4C=4a 面积=边长*边长S=a*a

2、正方体:V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6

体 积=棱长*棱长*棱长 V=a*a*a

3、长方形:

C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab

4、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh)

(2)体积=长*宽*高 V=abh

5、三角形

s面积 a底 h高 面积=底*高÷2 s=ah÷2

三角形高=面积 *2÷底

三角形底=面积 *2÷高

6、平行四边形:s面积 a底 h高 面积=底*高 s=ah

7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)*h÷2

8 圆形:S面 C周长 ∏ d=直径 r=半径

(1)周长=直径*∏=2*∏*半径 C=∏d=2∏r

(2)面积=半径*半径*∏

9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长*高

(2)表面积=侧面积+底面积*2

(3)体积=底面积*高

(4)体积=侧面积÷2*半径

10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积*高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数*倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数*倍数=大数

(或 小数+差=大数)

植树问题

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距*(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距*株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距*(株数+1)

株距=全长÷(株数+1)

2、封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距*株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

确定性数学方法有哪些

相关推荐:
  • 煮好的白木耳和莲子放冰箱过夜能吃吗?
  • 不得而知的而是什么意思(不得而知的而什么意思)
  • 全球购骑士卡是不是真的省钱(全球购骑士卡真的省钱吗)
  • 饲料的颜色有所不同吗(表示有所不同的成语)
  • 倒鸭子视频什么软件做的(倒鸭子客服对话)
上一篇:兄弟典故(古代兄弟重义的典故) 下一篇:糖厂安全生产知识培训内容(生产车间员工安全培训内容怎么写)

相关推荐

煮好的白木耳和莲子放冰箱过夜能吃吗?
不得而知的而是什么意思(不得而知的而什么意思)
全球购骑士卡是不是真的省钱(全球购骑士卡真的省钱吗)
饲料的颜色有所不同吗(表示有所不同的成语)
倒鸭子视频什么软件做的(倒鸭子客服对话)
大米放了一段时间颜色有点暗了还能吃吗
自制午餐肉怎么做好吃又简单(自制午餐肉怎么做)
西柚泡水很苦怎么回事?(西柚切片泡水总有苦味)
权利保障的前提和基础是什么?(什么保障是权利保障的关键环节?)
金属加工工艺有哪些种类(金属的加工方式有哪些)
潮流时尚 写作素材 创新创业
生活常识 策划方案 安全知识
自考专业 家居生活 三农创业
励志故事 时尚穿搭 星座知识
热门分类

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
 蜀ICP备2020033479号-4  Copyright © 2016  学习鸟. 页面生成时间:2.934秒

返回顶部