数字控制器的离散化方法有
一是将连续的被控对象离散化--等效的离散系统数学模型,然后在离散系统的范畴内分析整个闭环系统;在传统的模拟控制系统中,控制器的控制规律或控制作用是由仪表或电子装置的硬件电路完成的,而在计算机控制系统中,除了计算机装置以外,更主要的体现在软件算法上,即数字控制器的设计上。
二是将数字控制器等效为一个连续环节,然后采用连续系统的方法来分析与设计整个控制系统。相应地,在设计方法上就可以分为:模拟化设计方法和离散化设计方法。
极差
说明数据的波动幅度。
平均差 符合条件
定义:在一组数据x1,x2,…,xn中各数据与它们的平均数的差的绝对值的平均数即这组数据的“平均差”。平均差越大,数据离散程度越高。
方差
定义:在一组数据x1,x2,…,xn中,各数据与它们的平均数差的平方,它们的平均数,即为这组数据的方差。
一组数据方差的算数平方根即为这组数据的标准差。
方差和标准差越小 说明数据离散程度越低
据我所知,应该没有了
许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为离散化。例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。
例如在二小时的赛车比赛中,记录了三个不同时间点的赛车速度,如下表: 时间 0:20 1:00 1:40 km/h 140 150 180 利用离散化的方式,可以假设赛车在0:00到0:40之间的速度、0:40到1:20之间的速度及1:20到2:00之间的速度分别为三个定值,因此前40分钟的总位移可近似为(2/3h * 140 km/h) = 93.3 公里。可依此方式近似二小时内的总位移为93.3 公里 + 100 公里 + 120 公里 = 313.3 公里。位移是速度的积分,而上述的作法是用黎曼和(英语:Riemann sum)进行数值积分的一个例子。
Microsoft SQL Server 2005 Analysis Services (SSAS) 中创建数据挖掘模型时所用的有些算法需要特定的内容类型才能正确运行。例如,有些算法(如 Microsoft Naive Bayes 算法)不能使用连续列作为输入,即不能预测连续值。另外,有些列可能会因包含的值太多而导致算法不易标识数据中据以创建模型的相关模式。
在此类情况下,可以将列中的数据离散化,以便可以使用算法来生成挖掘模型。离散化是将一组连续的数据的值放入存储桶的过程,以便得到可能状态的离散数目。存储桶本身是作为有序且离散的值处理的。数值列和字符串列都可以进行离散化。
离散化数据时,可以使用多种方法。每种方法都能使用以下示例代码中的公式,自动计算要生成的存储桶的数目:
Number of Buckets = sqrt(n)
在上述示例代码中,n 是列中数据非重复值的数目。如果不希望由 Analysis Services 计算存储桶数目,则可使用 DiscretizationBuckets 属性来手动指定存储桶的数目。
Microsoft SQL Server 2005 Analysis Services (SSAS) 中创建数据挖掘模型时所用的有些算法需要特定的内容类型才能正确运行。例如,有些算法(如 Microsoft Naive Bayes 算法)不能使用连续列作为输入,即不能预测连续值。另外,有些列可能会因包含的值太多而导致算法不易标识数据中据以创建模型的相关模式。
在此类情况下,可以将列中的数据离散化,以便可以使用算法来生成挖掘模型。离散化是将一组连续的数据的值放入存储桶的过程,以便得到可能状态的离散数目。存储桶本身是作为有序且离散的值处理的。数值列和字符串列都可以进行离散化。
离散化数据时,可以使用多种方法。每种方法都能使用以下示例代码中的公式,自动计算要生成的存储桶的数目:
Number of Buckets = sqrt(n)
在上述示例代码中,n 是列中数据非重复值的数目。如果不希望由 Analysis Services 计算存储桶数目,则可使用 DiscretizationBuckets 属性来手动指定存储桶的数目。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.752秒