的确闹笑话了,把题看错了,向指正者表示谢意! 组合: 从m个不同元素中,任取出n个成一组,称为一个组合.这样得到的不同组合的总数,称组合数,一般表示成:C(m,n) C(m,n)=m(m-1)。
(m-n+1)/n!=m!/[n!(m-n)!] 排列: 从m个不同元素中,任取出n个,并按一定次序排成一列,称为一个排列.这样得到的不同排列的总数,称排列数,一般表示成:P(m,n) P(m,n)=m(m-1)。(m-n+1)=m!/(m-n)!。
排列组合问题的解题策略关键词: 排列组合,解题策略 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。
评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 .评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 -3=32个.四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有 =72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.解:由于第一、三、五位置特殊,只能安排主力队员,有 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有 =252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。
故不同插法的种数为:A62 +A22A61=42 ,故选A。例7.(2003年全国高考试题)如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72.六、混合问题——先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( ) A. 种 B. 种 C. 种 D. 种解:本试题属于均分组问题。
则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种 解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31•A22,故不同的种植方法共有A31•C32•A22=12,故应选C.七.相同元素分配——档板分隔法例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。
请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。具体说,解排列组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。
排列组合问题的解题方略湖北省安陆市第二高级中学 张征洪排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。
因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律:1)使用“分类计数原理”还。
1.排列、排列数的定义,排列数的两个计算公式; 2.常见的排队的三种题型: ⑴某些元素不能在或必须排列在某一位置——优限法; ⑵某些元素要求连排(即必须相邻)——捆绑法; ⑶某些元素要求分离(即不能相邻)——插空法. 3.分类、分布思想的应用. 二、新授: 示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法? 解法一:(从特殊位置考虑) 解法二:(从特殊元素考虑)若选: 若不选: 则共有 + =136080 解法三:(间接法) 136080 示例二: ⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排, 则共有多少种不同的排法? 略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 . 所以一共有 =5760种方法. ⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种? 略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行排列有 ; 此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b“松绑”有 .所以一共有 =24种方法. ☆⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种? 略解:(分类)若第一个为老师则有 ;若第一个为学生则有 所以一共有2 =72种方法. 示例三: ⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数? 略解: ⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数? 解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法.所以一共有 个数比13 000大. 解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个. 示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列. ⑴ 第114个数是多少? ⑵ 3 796是第几个数? 解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数. ⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数. 示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中 ⑴ 能被25整除的数有多少个? ⑵ 十位数字比个位数字大的有多少个? 解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个. 注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况. ⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可能的”,所以十位数字比个位数字大的有 个. 三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性. 四、作业:“3+X”之 排列 练习 组 合 课题:组合、组合数的综合应用⑵ 目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题. 过程: 一、知识复习: 1.两个基本原理; 2.排列和组合的有关概念及相关性质. 二、例题评讲: 例1.6本不同的书,按下列要求各有多少种不同的选法: ⑴ 分给甲、乙、丙三人,每人两本; ⑵ 分为三份,每份两本; ⑶ 分为三份,一份一本,一份两本,一份三本; ⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本; ⑸ 分给甲、乙、丙三人,每人至少一本. 解:⑴ 根据分步计数原理得到: 种. ⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法. 注:本题是分组中的“均匀分组”问题. ⑶ 这是“不均匀分组”问题,一共有 种方法. ⑷ 在⑶的基础上在进行全排列,所以一共有 种方法. ⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有 种方法;②“1、2、3型”即⑷中的分配情况,有 种方法;③“1、1、4型”,有 种方法.所以一共有90+360+90=540种方法. 例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种? 解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法.根据分步计数原理,一共有 =240种方法. 例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法? ⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种? 解:⑴ 根据分步计数原理:一共有 种方法. ⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球。
同步教学
主讲人:黄冈中学教师 李新潮
一、一周知识概述
本周复习内容是高二数学(下)第十章——排列、组合和概率的前半部分内容.排列与组合是重点,也是难点,复习中用时较多.
二、重、难点知识的归纳与剖析
(一)、本周学习的重点
1、掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
2、理解排列的意义,掌握排列计算公式,并能用它解决一些简单的应用问题.
3、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
4、掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
(二)、本周学习的难点
1、排列与组合的综合应用
(1)相邻问题——捆绑法;
(2)不相邻问题——插空法;
(3)元素比较少而限制条件较多的问题——枚举归纳法;
(4)先组合,后排列,其求解的基本思路是先选元,后排列,或先局部,后整体;
(5)分类讨论要注重一类,照应全局.
2、正确理解二项式的展开式特征及指数、项数、项、系数、二项式系数,能熟练顺用、逆用,并注意
变用二项式定理.
三、例题点评
例1、某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
分析:
由于张数不限,2张2,3张A可以一起出,亦可分几次出,可以考虑按此分类.
解答:
出牌的方法可分为以下几类:
(1)5张牌全部分开出,有种方法;
(2)2张2一起出,3张A一起出,有种方法;
(3)2张2一起出,3张A分开出,有种方法;
(4)2张2一起出,3张A分两次出,有种方法;
(5)2张2分开出,3张A一起出,有种方法;
(6)2张2分开出,3张A分两次出,有种方法.
因此,共有不同的出牌方法
=860种.
点评:
全面细致地分类是解决本题的关键,若按出牌次数分类,方法数为:
=860种.
例2、二次函数y=ax2+bx+c的系数a,b,c在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?
分析:
先将坐标原点在抛物线内部的特征性质等价转化为 a,b,c的限制,再去确定满足条件的数对(a,b,c).
解答:
由图形特征分析:a>0,开口向上,坐标原点在内部,开口向下,原点在内部,所以对于抛物线y=ax2+bx+c来讲,原点在其内部,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有=144条.
点评:
这是一首排列、组合与解析几何的综合题,等价的将图形性质转化为数量关系是解决问题的基础和关键.
例3、若在的展开式中,前三项的系数成等差数列,求展开式中的有理项.
分析:抓住展开式的通项公式是解决问题的关键.
解答:
的展开式中前三项是:
其系数分别是:
由
解之得n=1或n=8,n=1不合题意应舍去,故n=8.
当n=8时,
Tr+1为有理项式的充要条件是,
所以r应是4的倍数,故r可为0、4、8.故所有有理项为
点评:要注意“系数”与“二项式系数”的区别.
实在看不懂去参考资料看看
排列组合 - 组合数的奇偶 对组合数C(n,k) (n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。
组合数的奇偶性判定方法为: 结论: 对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。 证明: 利用数学归纳法: 由C(n,k) = C(n,k-1) + C(n-1,k-1); 对应于杨辉三角: 1 1 2 1 1 3 3 1 1 4 6 4 1 ……………… 可以验证前面几层及k = 0时满足结论,下面证明在C(n-1,k)和C(n-1,k-1) (k > 0) 满足结论的情况下, C(n,k)满足结论。
1).假设C(n-1,k)和C(n-1,k-1)为奇数: 则有:(n-1)&k == k; (n-1)&(k-1) == k-1; 由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1 。 现假设n&k == k。
则同样因为n-1和n的最后一位不同推出k的最后一位是1。 因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾。
所以得n&k != k。 2).假设C(n-1,k)和C(n-1,k-1)为偶数: 则有:(n-1)&k != k; (n-1)&(k-1) != k-1; 现假设n&k == k. 则对于k最后一位为1的情况: 此时n最后一位也为1,所以有(n-1)&(k-1) == k-1,与假设矛盾。
而对于k最后一位为0的情况: 则k的末尾必有一部分形如:10; 代表任意个0。 相应的,n对应的部分为: 1{*}*; *代表0或1。
而若n对应的{*}*中只要有一个为1,则(n-1)&k == k成立,所以n对应部分也应该是10。 则相应的,k-1和n-1的末尾部分均为01,所以(n-1)&(k-1) == k-1 成立,与假设矛盾。
所以得n&k != k。 由1)和2)得出当C(n,k)是偶数时,n&k != k。
3).假设C(n-1,k)为奇数而C(n-1,k-1)为偶数: 则有:(n-1)&k == k; (n-1)&(k-1) != k-1; 显然,k的最后一位只能是0,否则由(n-1)&k == k即可推出(n-1)&(k-1) == k-1。 所以k的末尾必有一部分形如:10; 相应的,n-1的对应部分为: 1{*}*; 相应的,k-1的对应部分为: 01; 则若要使得(n-1)&(k-1) != k-1 则要求n-1对应的{*}*中至少有一个是0. 所以n的对应部分也就为 : 1{*}*; (不会因为进位变1为0) 所以 n&k = k。
4).假设C(n-1,k)为偶数而C(n-1,k-1)为奇数: 则有:(n-1)&k != k; (n-1)&(k-1) == k-1; 分两种情况: 当k-1的最后一位为0时: 则k-1的末尾必有一部分形如: 10; 相应的,k的对应部分为 : 11; 相应的,n-1的对应部分为 : 1{*}0; (若为1{*}1,则(n-1)&k == k) 相应的,n的对应部分为 : 1{*}1; 所以n&k = k。 当k-1的最后一位为1时: 则k-1的末尾必有一部分形如: 01; (前面的0可以是附加上去的) 相应的,k的对应部分为 : 10; 相应的,n-1的对应部分为 : 01; (若为11,则(n-1)&k == k) 相应的,n的对应部分为 : 10; 所以n&k = k。
由3),4)得出当C(n,k)为奇数时,n&k = k。 综上,结论得证! 排列组合 - 概述 定义 公式P是指排列,从N个元素取R个进行排列(即排序)。
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。 排列:从N个不同元素中,任取M(M<=N)个元素,按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。
排列数:从N个不同元素中取出M(M<=N)个元素的所有排列的个数,叫做从N个不同元素中取出M个元素的排列数。记作:Pmn 排列数公式: Pmn =n(n-1)(n-2)。
(n-m+1) 全排列:N个不同元素全部取出的一个排列,叫做N个不同元素的一个全排列。 自然数1到N的连乘积,叫做N的阶乘。
记作:n! (0!=1) 全排列公式: Pnn =n! 排列数公式还可写成: Pmn = n!/(n-m)! 加法原理:做一件事,完成它可以有N类加法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,。,在第N类办法中有MN 种不同的方法。
那么完成这件事共有 N=M1+M2+。+MN 种不同的方法。
乘法原理:做一件事,完成它需要分成N个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,。,做第N步有MN种不同的方法,那么完成这件事共有 N=M1*M2*。
*MN 种不同的方法。 C-组合数 P-排列数 N-元素的总个数 R参与选择的元素个数 !-阶乘 ,如5!=5*4*3*2*1=120组合:从N个不同元素中,任取M(M<=N)个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合。
排列 与元素的顺序有关, 组合 与元素的顺序无关。 组合数:从N个不同元素中取出M(M<=N)个元素的所有组合的个数,叫做从N个不同元素中取出M个元素的组合数。
记作:Cmn 组合数公式: Cmn = Pmn / Pmm = n(n-1)(n-2)。(n-m+1)/m! = n!/m!/(n-m)! 组合性质1: Cmn = Cn-mn ( C0n =1) 组合性质2: Cmn+1 = Cmn + Cm-1n C-Combination 组合 P-Permutation 排列 排列的变化排列的变化,排列数“P”现在已成了“A”,P是旧用法,现在教材上多用A,即Arrangement也就是说,“P 3 3”已成了“A 3 3”.高考、中考也是这样,希望大家改过来! 小学排列组合公式 1、“C m n”=“C m (m-n)” 2、“C m 0(m大于0)”=1 3、“C m 0”+“C m 1”+。
+“C m 10”=2的m次方 排列组合 - 举例分析 理论依据 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否。
排列组合必背常用数:对于有限制条件的元素(或位置)优先考虑,再去解决其它元素(或位置)。
要求元素相邻时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序。排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.023秒