数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点. 数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质. 高考大纲对数列要求 近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”参考资料:?fr=qrl3。
数列·例题解析 【例1】 求出下列各数列的一个通项公式解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n-1,而前5项的分母所组成的数列的通项公式为2*2n,所以,已知数列的(2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n,而分母组成的数列3,15,35,63,…可以变形为1*3,3*5,5*7,7*9,…即每一项可以看成序号n的(2n-1)与2n+1的积,也即(2n-1)(2n+1),因此,所给数列的通项公式为:(3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1*3,2*4,3*5,4*6,5*7,…,即每一项可以看成序号n与n+2的积,也即n(n+2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为:1,4,9,16,25,…是序号n的平方即n2,分母均为2.因此所【例2】 求出下列各数列的一个通项公式.(1)2,0,2,0,2,…(3)7,77,777,7777,77777,…(4)0.2,0.22,0.222,0.2222,0.22222,…解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式an=(-1)n+1+1.所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的数列n,分子组成的数列为1,0,1,0,1,0,…可以看作是2,(4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写说明1.用归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律.对于项的结构比较复杂的数列,可将其分成几个部分分别考虑,然后将它们按运算规律结合起来.2.对于常见的一些数列的通项公式(如:自然数列,an=n;自然数的平方数列,an=n2;奇数数列,an=2n-1;偶数数列,an=2n;纳出数列的通项公式.3.要掌握对数列各项的同加、同减、同乘以某一个不等于零的数的变形方法,将其转化为常见的一些数列.几项.【例4】 已知下面各数列{an}的前n项和Sn的公式,求数列的通项公式.(1)Sn=2n2-3n (2)Sn=n2+1(3)Sn=2n+3 (4)Sn=(-1)n+1·n解 (1)当n=1时,a1=S1=-1;当n≥2时,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a1也适合此等式,因此an=4n-5.(2)当n=1时,a1=S1=1+1=2;当n≥2时,an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1,由于a1不适合于此等式,(3)当n=1时,a1=S1=2+3=5;当n≥2时,an=Sn-Sn-1=2n+3-(2n-1+3)=2n-1,由于a1不适合于此等式,(4)当n=1时,a1=S1=(-1)2·1=1;当n≥2时,an=Sn-Sn-1=(-1)n+1·n-(-1)n·(n-1)=(-1)n+1(2n-1),由于a1也适可于此等式,因此an=(-1)n+1(2n-1),n∈N*.说明 已知Sn求an时,要先分n=1和n≥2两种情况分别进行计算,然后验证能否统一.(1)写出数列的前5项;(2)求an.(2)由第(1)小题中前5项不难求出.【例6】 数列{an}中,a1=1,对所有的n≥2,都有a1·a2·a3·…·an=n2.(1)求a3+a5;解 由已知:a1·a2·a3·…·an=n2得说明 (1)“知和求差”、“知积求商”是数列中常用的基本方法.(2)运用方程思想求n,若n∈N*,则n是此数列中的项,反之,则不是此数列中的项.【例7】 已知数an=(a2-1)(n3-2n)(a=≠±1)是递增数列,试确定a的取值范围.解法一 ∵数列{an}是递增数列,∴an+1>anan+1-an=(a2-1)[(n+1)3-2(n+1)]-(a2-1)(n3-2n)=(a2-1)[(n+1)3-2(n+1)-n3+2n]=(a2-1)(3n2+3n-1)∵(a2-1)(3n2+3n-1)>0又∵n∈N*,∴3n2+3n-1=3n(n+1)-1>0∴a2-1>0,解得a1.解法二 ∵{an}是递增数列,∴a10∴a1说明 本题从函数的观点出发,利用递增数列这一已知条件,将求取值范围的问题转化为解不等式的问题。
一、等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1例题:已知{an}是等差数列,a2=8,S10=185,从数列中依次取出偶数项组成一个新的数列{bn},求数列{bn}的通项公式解:(Ⅰ)设{an}首项为a1,公差为d,则 a1+d=8 10(2a1+9d)/2=185,解得 a1=5 d=3 ∴an=5+3(n-1),即an=3n+2 (Ⅱ)设b1=a2,b2=a4,b3=a8, 则bn=a2^n = 3*2^n+2二 等比数列如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·qn-m(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。
例题:前n项和为s=3^n+a 当a为多少时 an为等比数列解: 当n>1时, Sn=3^n+a Sn-1=3^(n-1)+a 故an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1) 所以an应该是以2为首项,3为公比的等比数列,但这是n>1的情况,必须保证n=1也符合上面的通项公式. 所以a1=2*3^0=2……(1) 又S1=a1=3^1+a……(2) 根据(1)(2)式得 a=-1。
例1.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.
(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;
(2)至少经过几年,旅游业的总收入才能超过总投入?
命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力。
知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.
技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.
解:(1)第1年投入为800万元,第2年投入为800*(1-)万元,…第n年投入为800*(1-)n-1万元,所以,n年内的总投入为
an=800+800*(1-)+…+800*(1-)n-1=800*(1-)k-1
=4000*[1-()n]
第1年旅游业收入为400万元,第2年旅游业收入为400*(1+),…,第n年旅游业收入400*(1+)n-1万元.所以,n年内的旅游业总收入为
bn=400+400*(1+)+…+400*(1+)k-1=400*()k-1.
=1600*[()n-1]
(2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即:
1600*[()n-1]-4000*[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x1(舍去).即()n
∴至少经过5年,旅游业的总收入才能超过总投入.
数 列 摘要:数列问题是一个很有趣的问题,生活中的很多事件,都和数列紧紧的联系在一起,本课题重点研究了等差数列,等差数列的判定,等差数列的性质,等差数列的证明,以及数学证明中常用的方法数学归纳法等。
关键词:等差 等差数列 相连项 前n项和 在数学发展的早期已有许多人研究过数列这一课题,特别是等差数列。例如早在公元前2700年以前埃及数学的《莱因特纸草书》中,就记载著相关的问题。
在巴比伦晚期的《泥板文书》中,也有按级递减分物的等差数列问题。其中有 一个问题大意是: 10个兄弟分100两银子,长兄最多,依次减少相同数目 。
现知第八兄弟分得6两,问相邻两兄弟相差多少?数列是从生活中抽像出来的,日常生活中遇到的许多实际问题,如贷款、利率、折旧、人口增长、放射物的衰变等都可以用等差数列和等比数列来刻画,然而在数学这门学科中数列又是如何定义的呢?数列:按一定次序排列的一列数表示方法:1 列举法 :如数列 , , 2解析法 :通项公式、递推公式求数列通项的方法:观察归纳法、待定系数法、公式法数列的分类:1 按项数分为有穷数列和无穷数列 2 按范围分为有界数列和无界数列 3 按单调性分为递增数列、递减数列和常数列(摆动数列)我们在日常生活中经常会碰见一些关于数列的问题 1.四年级同学小明觉得自己英语成绩很差,目前他的单词量只 yes,no,you,me,he 5个 他决定从今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,… (问:多少天后他的单词量达到3000?) 2.小李是石河子大学化学系的一名学生,他的英语成绩很棒,他在大二时就过了外语四级,她目前的单词量多达4500 但后来迷上了网络游戏,他打算从今天起不再背单词了,结果不知不觉地每天忘掉30个单词,那么从今天开始,她的单词量逐日递减,依次为:4500,4470,4440,4410,… (问:多少天后她那4500个单词全部忘光?)从上面两例中,我们分别得到两个数列 ① 5,15,25,35,… 和 ② 4500,4470,4440,4410,… 大家仔细观察一下,看看以上两个数列有什么共同特征?? ·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等--应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字--等差数列) 1. 等差数列的定义:如果一个数列,从第二项起,每一项与它前面一项的差等于同一个常数,我们把这样的数列叫做等差数列 2. 等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得 若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: 等差中项:如过三个数 成等差数列那么中间一项 称为 的等差中项 ∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项 下面我们来具体研究等差数列的一些问题 一、等差数列的判定方法 1. 若数列 从第二项起每一项与前一项的差都为同一个常数d,即: - =d(常数) 则 是等差数列,其公差为d 2.若数列从第二项起,每一项的两倍都等于前一项与后一项的和即: 2 = + 则是等差数列( 是 与 的等差中项) 3. 若数列 的通项 是项数n的一次多项式或者是常数,即: = (p,q为常数), 则 是等差数列,其首项是 ,公差是 4. 若数列 的前n项和 是项数n的二次项系数为零的二次多项式或一次多项式,即: (k,h为常数),则 是等差数列,其首项是 ,公差是 5. 若数列 是公差为d的等差数列,k是一个常数,则数列 是公差为kd的等差数列 6.若数列 是公差为d的等差数列,r是一个常数,则数列 也是公差为d的等差数列例1. 判断下列数列 是否为等差数列?如果是写出其公差(1) 的第n项为: (2) 的第n项为: (3) 的第n项和为: (4) 的第n项和为: 解:(1)因为 =5 =5 = 所以 是等差数列,其公差为 (2)因为 = 所以 是项数n的一次多项式,从而 是等差数列,其公差为4。(3)因为 = 所以 是项数n的二次多项式,二次多项式系数是3,常数项为零,因此 是等差数列,其公差d=6 (4) 所以 是项数n的二次多项式,常数项为1,因此 不是等差数列 二 、等差数列的基本公式及一些简单求法基本公式: (1) = 或者 = = (2) (3) ,特别的 或者 ,特别的 (一) 简单公式求法 利用等差数列的基本公式,解一些关于等差数列的题目,俗话说的好知三求二。
例1. 在等差数列 中,已知 , ,求 , , 解法一:∵ , ,则 ∴ 解法二:∵ ∴ 小结:第二通项公式 例2.将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论 解:通过计算发现 的值恒等于公差证明:设等差数列{ }的首项为 ,末项为 ,公差为d, ⑴-⑵得 小结:①这就是第二通项公式的变形,②几何特征,直线的斜率(2) 相连项求法如过三个数 成等差数列那么中间一项 称为 的等差中项。若三个数成等差数列时,我们通常设等差中项为a,公差为d,于是这三个数为: ,这样的话它们的和就是一个差与公d无关的数,(只与等差中项a有关)这样通常可以简化运算,同理若四个连续的数成等差数列,我门通。
只有是等差数列的话。
a(n+1)-an才会等于一个恒定的值。
不过不是定值,有的也能求,但不是等比也不是等差。
比如a(n+1)-an=-(n+2)
a(n+1)+(n+2)=an
a(n+1)+2(n+1)=an+n
这个就是个an+n的等比数列。
an-an-1=a1是想问什么?
a1是个恒定的值,那么这个就是等差数列了。
还有疑问追问我把。希望对您有所帮助
数列是高中数学的重要内容,它是学习高等数学的基础,是高考的热点问题。在高考中灵活运用通项公式、前n项和公式以及两种特殊数列的性质将是考查的重点。在数列的考查中主要体现了函数与方程、等价转化、分类讨论、归纳等数学思想,以及待定系数法、换元法、反证法、数学归纳法等基本方法,应引起足够的重视。解答数列客观题有三个境界:①基本元法:已知-基本元-所求;②用性质解题;③用特殊与一般的思想。
解答题有五类:①基本运算题;②与函数、方程、不等式综合题;③探索性问题(包括数学归纳法);④推理证明题;⑤关于数列实际知识的应用题。
复习策略
1、明确应用本章知识要解决的主要问题
(1)对数列概念理解的题目;
(2)等差数列和等比数列中的五个量 ,“知三求二”的问题;
(3)数列知识在实际方面的应用。
2、解决上述问题时,一是用函数观点来分析、解决有关数列的问题;二是要运用方程的思想解决等差数列和等比数列中的“知三求二”的问题;三是能自觉运用等差、等比数列的特性来化简;四是掌握必要的技巧(如化归、错位相减、裂项求和、递推等);五是熟练掌握 与 的关系式的用法。
求数列通项公式的常规思想方法列举(配典型例题)数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。
一. 观察法例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2) (3) (4) 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为: (2) (3) (4) .观察各项的特点,关键是找出各项与项数n的关系。 二、定义法例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,∴a3-a1=d2-(d-2)2=2d,∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,∴ =q2,由q∈R,且q≠1,得q=-2,∴bn=b•qn-1=4•(-2)n-1当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。
三、叠加法例3:已知数列6,9,14,21,30,…求此数列的一个通项。解 易知 ∵ ……各式相加得 ∴ 一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。
四、叠乘法例4:在数列{ }中, =1, (n+1)• =n• ,求 的表达式。解:由(n+1)• =n• 得 , = • • … = 所以 一般地,对于型如 = (n)• 类的通项公式,当 的值可以求得时,宜采用此方法。
五、公式法若已知数列的前 项和 与 的关系,求数列 的通项 可用公式 求解。例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。
(1) 。 (2) 解: (1) = = =3 此时, 。
∴ =3 为所求数列的通项公式。(2) ,当 时 由于 不适合于此等式 。
∴ 注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。 例6. 设数列 的首项为a1=1,前n项和Sn满足关系 求证:数列 是等比数列。
解析:因为 所以 所以,数列 是等比数列。六、阶差法例7.已知数列 的前 项和 与 的关系是 ,其中b是与n无关的常数,且 。
求出用n和b表示的an的关系式。解析:首先由公式: 得:利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即其和为 。
七、待定系数法例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn解:设 点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。八、辅助数列法有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例9.在数列 中, , , ,求 。解析:在 两边减去 ,得 ∴ 是以 为首项,以 为公比的等比数列,∴ ,由累加法得 = = … = = = 例10.(2003年全国高考题)设 为常数,且 ( ),证明:对任意n≥1, 证明:设, 用 代入可得 ∴ 是公比为 ,首项为 的等比数列,∴ ( ),即: 型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。
例11:已知数 的递推关系为 ,且 求通项 。解:∵ ∴ 令 则辅助数列 是公比为2的等比数列∴ 即 ∴ 例12: 已知数列{ }中 且 ( ),,求数列的通项公式。
解:∵ ∴ , 设 ,则 故{ }是以 为首项,1为公差的等差数列 ∴ ∴ 例13.(07全国卷Ⅱ理21)设数列 的首项 .(1)求 的通项公式;解:(1)由 整理得 . 又 ,所以 是首项为 ,公比为 的等比数列,得注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成 则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。
例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1 易得 bn= 即 2nan= ∴ an= (3) f(n)为等差数列例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。
解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2 因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。
(4) f(n)为非等差数列,非等比数列例16.(07天津卷理)在数列 中, ,其中 .(Ⅰ)求数列 的通项公式;解:由 , ,可得 ,所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .这种方法类似于换元法, 主要用于已知递推关系式求通项公式。九、归纳、猜想如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…(1) 写出 与 之间的关系式( )。(2) 设 ,计算 ,由此推测 的通项公式,并。
高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 一、基本概念: 1、数列的定义及表示方法: 2、数列的项与项数: 3、有穷数列与无穷数列: 4、递增(减)、摆动、循环数列: 5、数列的通项公式an: 6、数列的前n项和公式Sn: 7、等差数列、公差d、等差数列的结构: 8、等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列中,若m+n=p+q,则 16、等比数列中,若m+n=p+q,则 17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列与的和差的数列、仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列 、、仍为等比数列。 20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、为等差数列,则 (c>0)是等比数列。
25、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.503秒