• 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
  • 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
首页 » 基础知识 » 一次函数课件(一次函数讲解)

一次函数课件(一次函数讲解)

分类:基础知识 日期:2022-02-06 10:40 浏览:24 次

1.一次函数讲解

基本定义相关性质与二元一次方程的关系常用公式展开 【读音】yī cì hán shù 【解释】函数的基本概念:在某一个变化过程中,设有两个变量x和y,如果对于x的每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也就是说x是自变量,y是因变量。

表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx(k≠0),常数k叫做比例系数或斜率,b叫做纵截距。

一次函数现在是初二教学本里较难的一章,应用最广泛,知识最丰富的数学课题编辑本段基本定义 变量:可以取不同数值的量 常量:保持数值不变的量(固定) 自变量k和X的一次函数y有如下关系: 1.y=kx+b (k为任意不为0的常数,b为任意常数) 当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。

x为自变量,y为函数值,k为常数,y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。 定义域(函数值):自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。

常用的表示方法:解析法、图像法、列表法。编辑本段相关性质 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k.K为常数. 即:y=kx+b(k,b为常数,k≠0), ∵当x增加m,k(x+m)+b=y+km,km/m=k。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质 1.作法与图形:通过如下3个步骤: (1)列表. (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。

(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b). 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比例): 当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k0,b>0, 这时此函数的图象经过第一、二、三象限; 当 k>0,b0, 这时此函数的图象经过第一、二、四象限; 当 k0时,直线必通过第一、二象限; 当b0时,直线只通过第一、三象限,不会通过第二、四象限。

当ky2,则x1与x2的大小关系是( ) A. x1>x2 B. x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。

故选A。 三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0,知k、b同号。

因为y随x的增大而减小,所以k30时,Y1>Y2 当X0,则可以列方程组 -2k+b=-11 6k+b=9 解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6 (2)若k0,则y随x的增大而增大;若k0 D.k为任意值 2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系用图象表示为( ) 3. (北京市)一次函数 的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. (陕西省课改实验区)直线 与x轴、y轴所围成的三角形的面积为( ) A. 3 B. 6 C. D. 5. (海南省)一次函数 的大致图象是( ) 二、填空题: 1. 若一次函数y=kx+b的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________. 2. (2006年北京市中考题)若正比例函数y=kx的图象经过点(1,2),则此函数的解析式为_____________. 三、一次函数的图象与y轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式. 四、(芜湖市课改实验区) 某种内燃动力机车在青藏铁路试验运行前,测得该种机车机械效率η和海拔高度h( ,单位km)的函数关系式如图所示. (1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系; (2)求在海拔3km的高度运行时,该机车的机械效率为多少? 五、(浙江省丽水市) 如图建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处. (。

财务基础知识培训课件,硬笔书法ppt基础知识课件,摄影基础知识ppt课件

2.初二数学上册第六章一次函数复习资料

第六章:一次函数 一、中考要求: 1.经历函数、一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力. 2.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力. 3.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系. 4.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题. 二、中考卷研究 (一)中考对知识点的考查: 2004、2005年部分省市课标中考涉及的知识点如下表: 序号 所考知识点 比率 1 一次函数的意义、图象和性质 2.5~3% 2 一次函数表达式的求法 2.5~7.5% 3 一次函数解决实际问题 2.5~10% (二)中考热点: 一次由数知识是每年中考的重点知识,是每卷必考的主要内容.本章主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.因此,一次函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题 三、中考命题趋势及复习对策 一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力. 针对中考命题趋势,在复习时应先理解一次函数概念.掌握其性质和图象,而且还要注重一次函数实际应用的练习. 2010-8-12 ★★★(I)考点突破★★★ 考点1:一次函数的意义及其图象和性质 一、考点讲解: 1.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数. 2.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-bk ,0 )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示. 3.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k 4.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系. ⑴ 直线经过第一、二、三象限(直线不经过第四象限); ⑵ 直线经过第一、三、四象限(直线不经过第二象限); ⑶ 直线经过第一、二、四象限(直线不经过第三象限); ⑷ 直线经过第二、三、四象限(直线不经过第一象限); 二、经典考题剖析: 【考题1-1】(2004、贵阳,4分)已知一次函数y=kx+b的图象如图1-6-1所示,当x A.y>0 B、y C、-2 解:D 点拨:由图象可知一次函数y=kx+b过一、三、四象限,当x 【考题1-2】(2004、宁安,3分)在函数y=2x+3中当自变量x满足______时,图象在第一象限. 解:0 四象限,与x轴交于(32 ,0),所以,当0 三、针对性训练:( 30分钟) (答案:238 ) l.下列关于x的函数中,是一次函数的是( ) 2.如果直线y=kx+b经过一、二、四象限,那么有() A.k>0,b>0 B.k>0,b C.k 0,bc<0,则直线y=-ab x-cb 不通过() A.第一象限B笛一线限C.第三象限D.第四象限 5.已知一次函数y= 32 x+m和y= -12 x+n的图象都经过点A(-2,0)且与y轴分别交于B、C两点,那么△ABC的面积是( ) A.2 B.3 C.4 D.6 6.已知一次函数y=kx+2,请你补充一个条件______,使y随x的增大而减小. 7.已知一次函数y=(3a+2)x-(4-b),求字母a、b为何值时:(1)y随x的增大而增大;(2)图象不经过第一象限;(3)图象经过原点;(4)图象平行于直线y=-4x+3;(5)图象与y轴交点在x轴下方. 8.若正比例函数y=(1-2m)x的图象经过点(x1,y1)和点(x2,y2)当x1y2 ,则m的取值范围是( ) A、m0 C.m12 9.两个一次函数y1=mx+n.y2=nx+n,它们在同一坐标系中的图象可能是图l-6-2中的( ) 10 小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l-6-3所示,那么小李赚了( ) A.32元 B.36元 C.38元 D.44元 11 杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息: (1)买进每份0.2元,卖出每份0.3元; (2)一个月内(以30天计)有20天每天可以卖出200份,其余10天每天只能卖出120份; (3)一个月内,每天从报社买进的报纸数必须相同,当天卖不掉的报纸,以每份0.1元退给报社. ①填下表: ②设每天从报社买进该种晚报x份(120≤x≤200 )时,月利润为y元,试求出y与x之间的函数表达式,并求月利润的最大值. 考点2:一次函数表达式的求法 一、考点讲解: 1、待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这。

基础知识,函数,课件

3.一次函数的重点与难点

一次函数是学习函数的基础,以后还要学到学多的函数,都是要运用到一次函数进行相关的计算的,尤其是二次函数的部分,学不好一次函数,二次函数几乎就是学不会的,所以我们要进我们的最大的能力要在学习一次函数这部分下点工夫,多花点时间,这样在我们学以后的知识的时候才能不那么的吃力,其实在我看来一次函数的知识都是重点,但是这些重点都不是什么难点,还是比较容易理解的,但是要牢记还是必须要下工夫是,下面就给你弄了点相关的知识,在你的资料上应该是有的

函数的基本概念:一般地,在某一变化过程中,有两个变量x和y,如果给定一个X值,相应地就确定了唯一一个Y值与X对应,那么我们称Y是X的函数(function).其中X是自变量,Y是因变量,也就是说Y是X的函数。

当x=a时,函数的值叫做当x=a时的函数值。

定义与定义式

自变量x和因变量y有如下关系: y=kx (k为任意不为零实数) 或y=kx+b (k为任意不为零实数,b为任意实数)

则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 形。取。象。交。减 正比例函数也是一次函数.

2.

性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时(既b等于0,y与x成正比)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当ky=kx+b时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当 k<0,b>0, 这时此函数的图象经过一,二,四象限。

当b>0时,直线必通过一、二象限;

当b特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①

和 y2=kx2+b …… ②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。上面的是你一定要会的,还有一些知识在下面的网址里/view/91620.htm

4.《一次函数》知识体系

函数的基本概念:一般地,在某一变化过程中,有两个变量x和y,如果给定一个X值,有唯一确定的Y值与之对应,那么我们称Y是X的函数(function).

定义与定义式

自变量x和因变量y有如下关系:

y=kx+b (k为任意不为零实数,b为任意实数)

则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为任意不为零实数)

一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b (k为任意不为零的实数 b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

一次函数的图像及性质

1.作法与图形:通过如下3个步骤

(1)列表[一般取两个点,根据两点确定一条直线];

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k当b>0时,直线必通过一、二象限;

当b=0时,直线必通过原点。

当b

y=kx+b时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当 k<0,b>0, 这时此函数的图象经过一,二,四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

确定一次函数的表达式

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

一次函数在生活中的应用

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

常用公式(不全,希望有人补充)

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

5.求两一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

5.人教版初二一次函数

1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。

1.作法与图形:通过如下3个步骤 (1)列表[一般取两个点,根据两点确定一条直线]; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点) y=kx时 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k y=kx+b时: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。 当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。 当 k0, 这时此函数的图象经过一,二,四象限。

当b>0时,直线必通过一、二象限; 当b 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)一、确定字母系数的取值范围 例1. 已知正比例函数 ,则当m=______________时,y随x的增大而减小。

解:根据正比例函数的定义和性质,得 且my2,则x1与x2的大小关系是( ) A. x1>x2 B. x10,且y1>y2。

根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。

所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。

故选A . 典型例题: 例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围. 分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理. 解:由题意设所求函数为y=kx+12 则13.5=3k+12,得k=0.5 ∴所求函数解析式为y=0.5x+12 由23=0.5x+12得:x=22 ∴自变量x的取值范围是0≤x≤22 【考点指要】 一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法. 例2.如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。 解:(1)若k>0,则可以列方程组 -2k+b=-11 6k+b=9 解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6 (2)若k 6k+b=-11 解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4 【考点指要】 此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k 一次函数解析式的几种类型 ①ax+by+c=0[一般式] ②y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0) ③y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点) ④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点) ⑤x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距) 解析式表达局限性: ①所需条件较多(3个); ②、③不能表达没有斜率的直线(平行于x轴的直线); ④参数较多,计算过于烦琐; ⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

6.一次函数重点知识

定义:如果y=kx+b(k、b是常数且k不等于0),那么y叫做x的一次函数。二、一次函数的两个特征:(1)自变量x的指数为1 ;(2)k不等于0 ;(更特别的是:当b=0时,一次函数y=kx+b变为y=kx 这里k是常数且k不等于0 ,这是y叫做x的正比例函数)三、一次函数的图像和性质: 1、正比例函数y =kx(k不等于0)的图像是经过原点(0,0)的一条直线;一次函数y=kx+b的图像是一条过(0,b)和(-b/k,0)点的直线。 2、k、b的取值范围对函数图像的影响:A:当k>0时有三种情况即:(1)当k>0时 b>0时,图像经过一、二、三象限;(2)当k>0时 b=0时,图像经过原点,即一、三象限;(3)当k>0时 b<0图像一、四、三象限;B:当k<0时也有三种情况即:(1)当k<0时,b>0时,图像经过二、一、四象限;(2)当k<0时,b=0时,图像经过原点,即二、四象限;(3)当k<0时,b<0时,图像经过二、三、四象限 四、函数的增减性:当k>0时,y随x的增大而增大; 当k<o时,y随x的增大而减小。(在复习是一定要充分关注 k ,b两个系数,只要真正把我了他们对函数图像的作用,才能够更好的掌握一次函数)

反比例函数:一、定义:如果y=k/x(k是常数且k不等于0)那么y是x的反比例函数。二、x是自变量,由于x是分母,所以x的取值范围是不等于0的实数。要注意两个特性:(1)k不等于0 ;(2)y=k/x的变形式;三、反比例的图像和性质:(1)放比例函数的图像是双曲线,其两个分支可以无限接近坐标轴,但是永远不会与两轴相交;(2)当k>o时,双曲线的两个分支分别在第一、三象限内;当k<0时,双曲线的两个分支分别在第二、四象限内;(3)当k>0是,在每个象限内,y随x的增大而减小;当k<0是,在每个象限内,y随x的增大而增大。

一次函数基础知识课件

相关推荐:
  • 2014初级药剂师真题(初级药师考试内容及其题型都有哪些)
  • 知识产权法律基础自测答案(求《法律基础》模拟题和答案)
  • 医学类考题及答案(医学试题库)
  • 公共分什么类别(公共都包括哪些)
  • 一级下册第八单元归类(人教版小学语文一年级下册第一~八单元教材分析及教学建议)
上一篇:房地产培训(做房地产要掌握哪些?) 下一篇:秋天的诗句古诗悲伤(关于秋天凄凉的古诗有哪些?)

相关推荐

2014初级药剂师真题(初级药师考试内容及其题型都有哪些)
知识产权法律基础自测答案(求《法律基础》模拟题和答案)
医学类考题及答案(医学试题库)
公共分什么类别(公共都包括哪些)
一级下册第八单元归类(人教版小学语文一年级下册第一~八单元教材分析及教学建议)
钢结构工程相关(钢结构有哪些点)
dhlfedex的(请问:DHL.EMS.UPS.TNT.FEDEX.各有什么不同及)
衡器考试题(求电子秤原理及)
招警公共考什么(公安系统公务员考试公共主要考哪些)
证券资格证金融(证券资格考试汇总是什么)
潮流时尚 写作素材 创新创业
生活常识 策划方案 安全知识
自考专业 家居生活 三农创业
励志故事 时尚穿搭 星座知识
热门分类

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
 蜀ICP备2020033479号-4  Copyright © 2016  学习鸟. 页面生成时间:3.154秒

返回顶部