目录:
基础篇
第一讲 平面解析几何初步
1.1 直线与(直线的)方程
1.2 圆与(圆的)方程
1.3 空间直角坐标系
高考热点题型评析与探索
本讲测试题
第二讲 椭圆
2.1 椭圆
2.2 直线与椭圆的关系
高考热点题型评析与探索
本讲测试题
第三讲 抛物线
3.1 抛物线
3.2 直线与抛物线的关系
高考热点题型评析与探索
本讲测试题
第四讲 双曲线
4.1 双曲线
4.2 直线与双曲线的关系
高考热点题型评析与探索
本讲测试题
综合应用篇
解析几何的理论应用
一、集合问题
二、方程、不等式问题
三、最大(小)值、取值范围问题
四、函数问题
理论应用综合测试题
解析几何的实际应用
一、直线型应用题
二、圆型应用题
三、椭圆型应用题
四、抛物线型应用题
五、双曲线型应用题
实际应用综合测试题
资料来源:龙门专题 高中数学---解析几何
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体。
棱柱 斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
球
到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
高考数学解析几何题解题技巧 每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,高考数学解析几何又是难中之难。
其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。
我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。 (2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: ① 求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点问题(含切线问题); ③与曲线有关的最(极)值问题; ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数量特征; (3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分: (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类: ①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题; ②对称问题(包括关于点对称,关于直线对称)要熟记解法; ③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离. 以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。 预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类: (1)考查圆锥曲线的概念与性质; (2)求曲线方程和求轨迹; (3)关于直线与圆及圆锥曲线的位置关系的问题. 选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视. 请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。考试大纲这部分的变动就是(1)、简单线性规划由08年的了解提高到理解,(2)、椭圆的参数方程由08年的了解提高到理解。
04----08年,解析几何部分的命题都是“一大两小”——一个解答题两个客观题,多是以平面向量为载体,综合圆锥曲线交汇处为主干,构筑成知识网络型圆锥曲线问题,使平面向量的知识与解析几何的知识得到了很好的整合。集中体现对考生综合知识和应变能力的考查。
考查的重点落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点问题有求曲线方程问题、参数的取值范围问题、最值问题、定值问题、直线过定点问题、对称问题等,所以我们要掌握这些问题的基本解法。
命题特别注意对思维严密性的考查,解题时需要注意考虑以下几个问题: 1、设曲线方程时看清焦点在哪条坐标轴上;注意方程待定形式及参数方程的使用。 2、直线的斜率存在与不存在、斜率为零,相交问题注意“D”的影响等。
3、命题结论给出的方式:搞清。
哦,不要惧怕坐标方程,在解析几何题目中,要认真读懂题意,对于题目中没有明确的坐标系要学会建立,有明确坐标系的要熟练画好坐标系草图,如果有一动点在某圆上,可设动点时不用XY形式,直用参数三角形式,目的是为了简化计算,类似的动点在某抛物线上可设x一个即可,而Y根据抛物线方程用x表示出来,目的也是为简化计算量,以免引入过多不必要的未知数!当然具体题目分析不一样,如求解动点轨迹方程时要设XY,然后消参得到关于XY的方程…(我是黄冈09届高中毕业生,热爱数学)
对于有些几何性质,平时要多做题,总结所考查的知识点,更重要的是学会组建相关专题,做到知识点连续成网,最后各个击破,自己成为学习的主人。椭圆的第二定义,可判决点分布在椭圆内,上,外,还可知道点到焦点的间距,焦半径是一个定值,是最焦半轴,参数方程适用于化简方便,用一个参数角&表示点的横纵坐标,是归一消元法的妙用,即化归思想!
首先,解析几何的知识是必须有的,只有知识体系的建立才可以让你更了解这哥知识的内容.
第二,要学会充分利用初中的平面几何知识,解析几何说到底就一个计算,它本身就是为了解决平面几何问题而建立的体系,考得就是谁算得准,算得快,所以你要尽量减少计算的步骤和时间,才能更快更准,这就需要平面几何的知识,有时候用上了,题目会变的非常简单.
第三,就是熟方法,常用解决点的轨迹的几种方法一定要熟.还有,有的时候做题,不要太追求一定的思路,回归的定义和本质也是是很好的方法,最朴素的就是最好的.第四,多做题,做题是你熟悉这些方法和技巧的最快途径,不一定要大量练习计算,更多的是练习技巧.当然,基础的训练是不能少的.、
最关键的就是绘画图,和大量的练习
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:1.971秒