1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2 b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2 b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中。
第一块 平面直角坐标系及函数
平面直角坐标系是研究数学问题的一种基本工具之一.函数是数学中一个十分重要的概念,它借助于平面直角坐标系架起了数形结合的桥梁。正确理解函数的概念,掌握函数图象及其性质大分析解决问题中起关键作用。
1.函数的概念比较抽象,初中生理解时有一定难度,关键是应了解我们研究函数的实质就是研究两个变量之间的关系。在同一问题中,变化的数量之间往往有一定的联系,提示出某种规律,一个量变化,另一个量随之变化。
2.建立了平面直角坐标系后,平面内的点与有序实数对之间建立了一一对应关系。坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式。点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键。所以,求点的坐标和探求函数解析式是研究函数的两大重要课题。
3.函数体现的是一个变化过程,在这一变化过程中要具备下列三点:(1)只能有两个变量;(2)一个变量随另一个变量的数值变化而变化;(3)对于自变量的每一个确定值,函数有唯一的值与它对应,允许多个x对应同一个y,但不允许一个x对应着多个y。
4. 函数自变量的取值范围是一个重要的内容,它既要保证函数关系式有意义,又要保证符合实际意义。
5. 函数的表示方法一般有三种:表格、图象、解析式,它们各有优缺点。
6. 在平面直角坐标系中,如果以自变量的值为横坐标、相应的函数值为纵坐标描点,所有这样的点组成的图形就是这个函数的图象。一般分三个步骤画函数的图象:列表——描点——连线(平滑曲线)。
7. 函数与图象的关系必须理解:函数图象上的点的坐标满足函数关系式;满足函数关系式的点一定在函数图象上。就是我们常说的纯粹性和完备性。
8. 坐标平面内的点的坐标特征:包括坐标轴上的点,各象限角平分线上的点,关于坐标轴、原点对称的点,平行于坐标轴的直线上的点及点的平移变换等都应熟练掌握。
第二块 一次函数
一次函数是初中阶段函数的一种具体形态。如果两个变量x和y之间的函数关系可以表示为y=kx+b(k,b为常数,且k等于0)的形式,那么称y是x的一次函数,其中自变量x可取一切实数。当b=0时,y也叫做x的正比例函数。
1. 正比例函数是一次函数,但一次函数不一定是正比例函数,只有b=0时,才是正比例函数。
2. 一次函数的图象是一条直线,画直线y=kx+b时,一般选点(0,b)和点(-b/k,0),这恰好是直线与y轴和x轴的交点。而当-b/k不是整数时,(-b/k,0)也常被横纵坐标均为整数的点所替代。当b=0时,图象过原点,即正比例函数y=kx的图象是过原点的一条直线,画直线y=kx时,一般选原点(0,0)和点(1,k)。
3. 一次函数y=kx+b中,k,b的符号与函数的增减性及直线的位置(指经过的象限)有直接关联,应熟练掌握。一般来说,k>0时,图象经过第一、三象限,y随x的增大而增大;k<0时,图象经过第二、四象限,y随x的增大而减小;b>0时,图象过第一、二象限;b<0时,图象过第三、四象限;b=0时,图象过原点。
4. 求一次函数y=kx+b的表达式,实际上是求出k,b的值,一般需要两个条件,用二元一次方程组求得k,b,然后写出表达式。
5. 两个一次函数的图象的交点坐标,即为两个一次函数解析式所组成的方程组的解。
函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。
二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)2、坐标轴上的点的特征 在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上 x与y相等 点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p'关于x轴对称 横坐标相等,纵坐标互为相反数 点P与点p'关于y轴对称 纵坐标相等,横坐标互为相反数 点P与点p'关于原点对称 横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离:(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数的三种表示法(1)解析法(2)列表法(3)图像法3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。特别地,当一次函数 中的b为0时, (k为常数,k 0)。
这时,y叫做x的正比例函数。2、一次函数的图像:是一条直线3、正比例函数的性质,,一般地,正比例函数 有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
4、一次函数的性质,,一般地,一次函数 有下列性质:(1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小5、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。
解这类问题的一般方法是待定系数法。6、设两条直线分别为, : : 若 且 。
若 7、平移:上加下减,左加右减。8、较点坐标求法:联立方程组 五、反比例函数 1、反比例函数的概念 一般地,函数 (k是常数,k 0)叫做反比例函数。
反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像是双曲线。3、反比例函数的性质(1)当k>0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x 的增大而减小。 (2)当k<0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,y随x 的增大而增大。(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
(4)图像既是轴对称图形又是中心对称图形 (5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|4、反比例函数解析式的确定 只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。六、二次函数 1、二次函数的概念:一般地,如果 ,那么y叫做x 的二次函数。
2、二次函数的图像是一条抛物线。3、二次函数的性质:(1)a>0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x 时,y随x的增大而增大;抛物线有最低点,当x= 时,y有最小值, (2) a<0抛物线开口向下,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x 时,y随x的增大而减小,;抛物线有最高点,当x= 时,y有最大值, 4、.二次函数的解析式有三种形式:(1)一般式: (2)顶点式: (3)两根式: 5、抛物线 中, 的作用: 表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下 与对称轴有关:对称轴为x= ,a与b左同右异 表示抛物线与y轴的交点坐标:(0, )6、二次函数与一元二次方程的关系 一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。当 >0时,图像与x轴有两个交点;当 =0时,图像与x轴有一个交点;当 <0时,图像与x轴没有交点。
7、求抛物线的顶点、对称轴的方法 (1)公式法:顶点是 ,对称轴是直线 . (2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .8、平移: 可以由 平移得到。上加下减,左加右减。
一次函数一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0)二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4acV.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴y=ax^2 (0,0) x=0y=a(x-h)^2 (h,0) x=hy=a(x-h)^2+k (h,k) x=hy=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象; 当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象; 当h<0,k0时,开口向上,当a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 当△=0.图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0). (3)当题给条件为已知图。
1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。2、点的坐标的概念 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。3、不同位置的点的坐标的特征 ①各象限内点的坐标的特征 点P(x,y)在第一象限 点P(x,y)在第二象限 点P(x,y)在第三象限 点P(x,y)在第四象限 ②坐标轴上的点的特征 点P(x,y)在x轴上 ,x为任意实数 点P(x,y)在y轴上 ,y为任意实数 点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0) ③两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上 x与y相等 点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数 ④和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。⑤关于x轴、y轴或原点对称的点的坐标的特征 点P与点p'关于x轴对称 横坐标相等,纵坐标互为相反数 点P与点p'关于y轴对称 纵坐标相等,横坐标互为相反数 点P与点p'关于原点对称 横、纵坐标均互为相反数 ⑥点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于 (2)点P(x,y)到y轴的距离等于 (3)点P(x,y)到原点的距离等于 ⑦对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b).⑧坐标平移:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1)4、函数平移规律:左加右减、上加下减 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法 用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。一次函数和正比例函数 1、一次函数的概念:一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。
特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。
2、一次函数、正比例函数的图像 所有一次函数的图像都是一条直线 一次函数y=kx+b(k≠0)的图像是经过点(0,b)的直线(b是直线与y轴的交点的纵坐标,即一次函数在y轴上的截距);正比例函数 的图像是经过原点(0,0)的直线。 3、斜率: ①直线的斜截式方程,简称斜截式: y=kx+b(k≠0) ②由直线上两点确定的直线的两点式方程,简称两点式:③由直线在 轴和 轴上的截距确定的直线的截距式方程,简称截距式: ④设两条直线分别为, : : 若 若 ,则有 且 。
⑤点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: 4、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) 如图:点A坐标为(x1,y1)点B坐标为(x2,y2) 则AB间的距离,即线段AB的长度为 5、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。
解这类问题的一般方法是待定系数法。6、(1)一次函数图象是过 两点的一条直线,|k|的值越大,图象越靠近于y轴。
(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);(3)当k0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。
当b=0时,一次函数就是正比例函数,图象是过原点的一条直线 (5)几条直线互相平行。
一、函数的有关概念 1、函数的概念: 设在某变化过程中,有两个变量x、y,如果给定一个x的值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、平面直角坐标系: ①在同一平面内,两条互相垂直的数轴(原点重合,取向右和向上的方向为正方向)组成了一个平面直角坐标系,水平的数轴叫做横轴或x轴,铅直的数轴 叫做纵轴或y轴。 ②在平面直角坐标系中,两条数轴把平面分成了四个部分,为第一、二、三、四象限。
③在平面直角坐标系中,一对有序实数对与坐标平面内的点建立了一种一一对应的关系。 ④点A(a,b)在第一象限时:a>0,b>0;在第二象限时:a0; 在第三象限时:a<0,b0.b<0. ⑤坐标轴上的点不属于任何象限,在x轴上的点的纵坐标都为0;在y轴上的点的横坐标都为0,原点的坐标为(0,0)。
3、坐标平面内点的对称 点A(a,b)关于x轴的对称点为:A/(a,-b); 关于y轴的对称点为:A/(-a,b); 关于原点对称的点为:A/(-a,-b); 关于一、三象限的角平分线(直线y=x)对称的点为A/( b,a); 关于二、四象限的角平分线(直线y=-x)对称的点为A/( -b,-a)。 4 、平面内任意两点之间的距离:A(x1,y1),B(x2,y2)间的距离为: 5、平面内一条线段的中点坐标:线段AB,{A(x1,y1),B(x2,y2)}的中点坐标为: 6、函数的表示有三种方法:图象法,列表法,公式法(即解析式法)。
用解析式表示函数关系的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质; 用列表法表示函数关系的优点是:不必通过计算就知道当自变量取某些值时函数的对应值; 用图像法表示函数关系的优点是:能直观形象地表示出函数的变化情况.、二.正比例函数和一次函数 1、正比例函数:y=kx (k≠0)叫做正比例函数,它的图象是过原点的一条直线。|k|=tanα, α为直线与x轴的夹角(锐角); |k|越大, α越大. 当k>0时,图象分布在一、三象限,y随x的增大而增大;y随x的减小而减小。
且当x>0时,y>0;x=0时,y=0;x<o时,y<0. 当k0时,y<0;x=0时,y=0;x0. 2、一次函数:y=kx+b (k≠0)叫做一次函数,它的图象是平行于y=kx (k≠0)的一条直线。
与x轴的交点为(-b/k,0),与y轴的交点为(0,b); |k|=tanα, α为直线与x轴的夹角(锐角); |k|越大, α越大. 当k>0,b>0时,图象分布在一二三象限,y随x的增大而增大;y随x的减小而减小。 当k>0,b<0时,图象分布在一三四象限,y随x的增大而增大;y随x的减小而减小。
且当x>-b/k时,y>0;x=-b/k时,y=0;x<-b/k时,y<0. 当k0时,图象分布在一二四象限,y随x的增大而减小;y随x的减小而增大。 当k<0,b<0时,图象分布在二三四象限,y随x的增大而减小;y随x的减小而增大。
且当x>-b/k时,y<0;x=-b/k时,y=0;x0. 3、在y1=k1x+b1;y2=k2x+b2 (k1k2≠0) 中: 当y1‖y2时,k1=k2;当y1⊥y2时,k1k2= -1;当y1与y2不平行时,k1≠k2; 当这两直线不平行时,它们的交点坐标是两解析式联合方程组的解。 |k|=tanα,α为直线与x轴的夹角; |k|越大,夹角就越大;|k|越小,夹角就越小。
4、一次函数图象的平移:上下平移外加减;左右平移内加减。 y=k(x+0)+ b 内 外 例如:把y=-2x+5的图象向左平移3个单位的直线为:y=-2(x+3)+ 5,即y=-2x-1; 把y=-2x+5的图象向下平移3个单位的直线为:y=-2(x+0)+ 5-3,即y=-2x+2; 把y=-2x+5的图象向右平移3个单位再向上平移4个单位为:y=-2(x-3)+ 5+4; 即y=-2x+15. 5、函数解析式的确定: 正比例函数y=kx (k≠0)中因为有一个常量k,所以确定其解析式只要一个条件即可。
一次函数y=kx+b (k≠0)中因为有两个常量k,b所以确定其解析式要两个条件。 6、一次函数y=kx+b (k≠0) 关于x轴对称的直线为:y'=-kx-b 关于y轴对称的直线为:y'=-kx+b 关于原点对称的直线为:y'=kx-b三、反比例函数 1、叫做反比例函数,它的图象是双曲线。
当k>0时,图像分布在一、三象限,在每一个象限内y随x的增大而减小;y随x的减小而增大。当x>0时,y>0;当x<0时,y<0;(x≠0) 当k<0时,图像分布在二、四象限,在每一个象限内y随x的增大而增大;y随x的减小而减小。
当x>0时,y<0;当x0;(x≠0) 2、在反比例函数中,因为有一个常量k,所以解析式的确定只随一个条件即可。四、二次函数 y=ax2+bx+c(a≠0) 1、a确定抛物线的开口方向,|a|确定抛物线的形状 当a>0时,开口向上;当a<0时,开口向下。
当|a|越大时,开口越小;当|a|越小时,开口越大。 2、b确定抛物线对称轴的位置 当对称轴在y轴的左侧时,-b/2a 0,(a,b同号); 当对称轴在y轴的右侧时,-b/2a >0;此时ab<0,(a,b异号); 当对称轴是y轴时,-b/2a =0;此时ab=0。
(b=0). 3、c确定抛物线在y轴上的截距 当抛物线与y轴的正半轴相交时,c>0, 当抛物线过原点时,c=0, 当抛物线与y轴的负半轴相交时,c<0, c叫做抛物线在y轴上的截距(c可以为正数、负数、也可以为0).。
一次函数 编稿:范兴亚 审稿:白真 责编:高伟知识要点的考查内容梳理平面直角坐标系 常考查的题目是求点关于坐标轴、坐标原点的对称点的坐标;求线段长度;求某些点的坐标等,主要考查考生对点的坐标等知识的理解及观察、分析能力.函数的有关概念 常见题目有求自变量的取值范围,求函数值、函数图象、函数的表示法,主要考查学生的判断能力、计算能力、作图能力等.正比例函数和一次函数的概念、图象和性质 常见题目是求函数解析式,确定图象位置,利用函数性质解决某些问题,主要考查学生对数形结合思想的理解水平和对待定系数法掌握的熟练程度,要求考生既能熟练地根据图象的位置判断系数的情况或函数的变化趋势,又能依据函数的性质或系数的大小判定函数图象的位置.一元一次方程、一元一次不等式和一次函数的联系及其应用问题 旨在通过实际问题培养学生的化归能力,即把实际问题转化为学生学过的数学问题加以解决.规律方法指导 函数知识是历年中考的热点,与本章知识有关的考题约占全部试题的15%~25%.题型既有填空题、选择题又有中档的解答题,更有难度较大的综合题.近几年全国各地中考试卷中,还出现了设计新颖,贴近生活、反映时代特点的阅读理解题、开放性探索题和函数应用题.尤其是全国各地中考试卷中的压轴题,有三分之一以上是与函数有关的综合题.试题不仅考查函数的基础知识、基本技能、基本数学思想方法,还越来越重视对学生灵活运用知识能力,探索创新能力和实践能力的考查. 常用的方法有数形结合法、待定系数法、配方法、类比法;在解答选择题时,又常用直接法、排除法、特殊值法和验证法等.这些方法为分析问题和解决问题创造了有利条件,是开发智力、培养能力的重要途径.经典例题透析类型一:有关函数的概念 1.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是图中的( ). 思路点拨:本题综合考查正比例函数和一次函数图象和性质,k>0时,函数值随自变量x的增大而增大. 解析:∵y随x的增大而减小,∴ k ∵y=x+k中x的系数为1>0,k 总结升华:对有关函数概念的考查,主要是考查考生是否理解正比例函数、一次函数等有关概念.有时单独命题专门考查,有时则结合其它题目来考查.类型二:自变量的取值范围 2.函数的自变量x的取值范围是_________. 思路点拨:此题主要考查考生是否理解函数中自变量的取值范围的意义及解不等式、不等式组的运算能力,解题的关键是根据函数的解析式列出相应的不等式或不等式组,然后再求解. 解析:要使函数有意义,必须 解得 x≤且x≠-1. 总结升华: (1)作为函数的三大要素之一,自变量的取值范围这一问题理所当然成为中考重点考查的内容之 一,并且绝大部分的试题都是单独命题来专门考查. (2)在列出不等式或不等式组时,一般主要考虑:①分母不等于零;②二次根式的被开方数非负; ③如果自变量同时出现在分母与二次根式的被开方数中,则应根据上述①与②列出不等式组.类型三:确定函数的解析式 3.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数x(册)500080001000015000……成本y(元)28500360004100053500…… (1)经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个 一次函数的解析式(不要求写出x的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册? 思路点拨:此题主要考查待定系数法以及解方程(组)的运算能力.解题时应根据函数图象上的点的坐标与函数解析式之间的关系列出方程或方程组,然后再求解. 解析:(1)设所求一次函数的解析式为y=kx+b, 则 解得k=,b=16000. ∴所求的函数关系式为y=x+16000. (2)∵48000=x+16000. ∴x=12800. 答:能印该读物12800册. 总结升华:此类问题主要是考查考生利用待定系数法来求出有关函数一般解析式中的未知系数,从而确定该函数解析式的能力.类型四:图表信息 4.如图1,平面直角坐标系中画出了函数y=kx+b的图像. (1)根据图像,求k和b的值. (2)在图中画出函数y= -2x+2的图像. (3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值. 图 1 图 2 思路点拨:根据图象信息,求出一次函数解析式,找出图象的交点坐标,再根据图象的位置,判断函数值的大小. 解析:(1)∵直线y=kx+b经过点(-2,0),(0,2). ∴ 解得 ∴y=x+2. (2)y=-2x+2经过(0,2),(1,0),图像如图2所示. (3)当y=kx+b的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,即x的取值 范围为x>0.类型五:“三个一次型”的关系 5.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3.观察图3可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为.在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图。
一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量。表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。
可表示为y=kx。 现在是初二教学本里最难的一章(当然有一些人例外),应用最广泛,知识最丰富的数学课题 基本定义 变量:变化的量(可取不同值) 常量:不变的量(固定不变) 自变量k和X的一次函数y有如下关系: 1.y=kx+b (k为任意不为0的常数,b为任意常数) 当x取一个值时,y有且只有一个值与x对应。
如果有2个及以上个值与x对应时,就不是一次函数。 x为自变量,y为函数值,k为常数,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。
定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。 /view/91620.htm#sub91620 一次函数 百度百科 二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
二次函数 百度百科 /view/407281.htm#sub407281。
初中代数函数知识口诀
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数是否,辨别需分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.418秒