基础
第一讲 函数
1.1 集合
1.2 函数
高考热点题型评析与探索
深化
第二讲 函数的性质
2.1 函数的单调性
2.2 函数的奇偶性
2.3 反函数
高考热点题型评析与探索
联系
第三讲 基本初等函数
3.1 回顾正比例函数、反比例函数、一次函数、二次
3.2 幂函数
3.3 指数函数
3.4 对数函数
高考热点题型评析与探索
本讲测试题
综合应用
函数的应用
一、函数的理论应用
二、函数的实际应用
三、综合应用训练题
(一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,。
上海课外辅导哪里好,蓝舰教育为您解答:一,函数三要素
1,定义域(1)定义域要求:开偶次根号时候;分母时候;x的零次幂时候;对数函数的底数、真数时候;指数函数的底数时候;正切函数与余切函数的定义域;反三角函数的定义域;(2)和函数、差函数、乘积函数的定义域为运算各函数的定义域的交集
2,解析式:注意分段函数的理解
3,值域(1)二次函数的值域;一次函数的值域;反比例函数的值域;对勾(耐克)函数的值域;双刀函数的值域;指数函数的值域;对数函数的值域(2)分式函数的值域(3)有根号的函数求值域(主要用换元)(4)三角函数求值域(注意公式)
二,函数的四个性质
1,奇偶性,解析式公式与图像性质
2,对称性:对称轴和对称中心的公式
3,周期性
4,单调性:(重点),会用定义证明,会应用,会用来求值域
三,函数的图象
1,对称的转换,关于x轴和y轴,关于原点,关于y=x轴的变换
2,伸缩的转换,x乘以系数时候,y乘以系数时候(在三角函数部分有具体说明)
3,绝对值的影响:给“x”加绝对值的时候,给“y”加绝对值的时候
四,几个基础函数
1,二次函数:对称轴,单调性,最大值(最小值),开口,根(零点),韦达定理,△。
2,一次函数
3,耐克函数:注意和基本不等式的关系,最小值和最大值什么时候取到,单调性
4,反比例函数:主要是和分是函数平移之间的关系,找对称中心
5,指对数函数,会画图,注意底数的讨论,值域和定义域
6,幂函数:五个基本幂函数掌握就ok
这些是基础,综合运用还要自己多揣摩。
长宁中心:电话: 021 -56357061 56357001
-
地址: 定西路1232号大盈商务中心1号楼501,靠近安化路
-
地铁: 地铁2号线到中山公园站下车,从5号出口出来,3号线、4号线到中山公园站下车,从2号出口出来
高中数学主要分为函数与方程、立体几何、解析几何、数列、统计和概率,这几大部分组成。
函数包括介绍了9个基本初等函数,函数的性质和应用,很少的高数基础知识(导数和定积分)。这些都是考试的重点!! 立体几何包括了各种垂直与平行的问题【线线垂直(平行)、线面垂直(平行)、面面垂直(平行)】、求空间的角(常用几何法和坐标法)、求几何体的体积或表面积。
这部分的考题比较题型固定,解法也比较固定。 解析几何包括直线、圆、二次曲线(椭圆、双曲线、抛物线)。
这类题题型比较多,但是解法却比较固定(一般都是先设方程、再联立方程、通过其他条件(经常会用到韦达定理)求解参数。最后解出答案。)
数列的题目相当灵活,一般求通项、求和会经常考到,还经常和函数联系一起出题。所以这类题一般都会是压轴题。
统计和概率是比较简单的题。而且题型和解法都很固定,一般辅导书都比较详细。
这些是我总结的,希望对你有帮助!。
1. .函数的单调性(1)设x1x2a,b,x1x2那么 (x1x2)f(x1)f(x2)0(x1x2)f(x1)f(x2)0f(x1)f(x2)x1x2f(x1)f(x2)x1x20f(x)在a,b上是增函数; 0f(x)在a,b上是减函数.(2)设函数yf(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.注:如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)g(x)也是减函数;如果函数yf(u)和ug(x)在其对应的定义域上都是减函数,则复合函数yf[g(x)]是增函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.注:若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).注:对于函数yf(x)(xR),f(xa)f(bx)恒成立,则函数f(x)的对称轴是函数xab2;两个函数yf(xa)与yf(bx) 的图象关于直线xab2对称.a注:若f(x)f(xa),则函数yf(x)的图象关于点(,0)对称;若2f(x)f(xa),则函数yf(x)为周期为2a的周期函数.nn13. 多项式函数P(x)anxan1xa0的奇偶性多项式函数P(x)是奇函数P(x)的偶次项(即奇数项)的系数全为零. 多项式函数P(x)是偶函数P(x)的奇次项(即偶数项)的系数全为零. 23.函数yf(x)的图象的对称性(1)函数yf(x)的图象关于直线xa对称f(ax)f(ax) f(2ax)f(x).(2)函数yf(x)的图象关于直线xf(abmx)f(mx).ab2对称f(amx)f(bmx)4. 两个函数图象的对称性(1)函数yf(x)与函数yf(x)的图象关于直线x0(即y轴)对称. (2)函数yf(mxa)与函数yf(bmx)的图象关于直线x1ab2m对称.(3)函数yf(x)和yf(x)的图象关于直线y=x对称.。
八大基本函数七金刚
解析:
(1) 八大基本函数:
正比例函数,反比例函数,常函数;
一次函数;
二次函数;
幂函数;
指数函数;
对数函数;
三角函数;
反三角函数;
(2) 七金刚
定义域;
值域;
周期性;
奇偶性;
单调性;
凸凹性;
函数图像(截距,零点,顶点,极点,驻点)
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.933秒