(一)功
1. 功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,力就对物体做了功。
2. 功的两个不可缺少的因素:力和在力的方向上发生的位移。
3. 功的计算公式:
(1)F和s同方向情况:W=Fs 。
(2)F和s不同方向的情况: 。( 为F与s的夹角)
4. 功的单位:焦耳(牛•米),符号J,(N•m)
5. 功的正负判定方法:功是表示力对空间积累效果的物理量,只有大小没有方向,是标量,功的正负既不是描述方向也不是描述大小而有另外意义。
(1)当 时, ,W为正值,力对物体做正功,力对物体的运动起推动作用。
(2)当 时, ,W=0,力对物体不做功,力对物体的运动既不推动也不阻碍。
(3)当 时, ,W为负值,力对物体做负功或者说物体克服力F做功,力对物体的运动起阻碍作用。
6. 在曲线运动中,功的正负判定方法:看力F与速度v的夹角 。
7. 注意:讲“功”,一定要指明是哪个力对那个物体的功,功是标量。
8. 恒力做功的求法: 中的F是恒力,求恒力所做的功只要找出F、s、即可。
9. 合力做功(总功)的求法:一种方法是先求出合力再用 求总功,另一种方法是 即总功等于各个力做功的代数和,这两种方法都要求先对物体进行正确的受力分析,后一种方法还要求把各个功的正负号代入运算。
10. 一些变力(指大小不变,方向改变,如滑动摩擦阻力,空气阻力),在物体做曲线运动或往复运动过程中,这些力虽然方向变,但每时每刻与速度反向,此时可化成恒力做功,方法是分段考虑,然后求和。
(二)功率
1. 功率的概念:功跟完成这些功所用时间的比值叫功率。功率是表示做功快慢的物理量,是标量。单位是瓦(W)。
2. 功率的计算方法(平均功率和瞬时功率的求法)。
是平均功率,对功率 ,当v为平均速度时,P为平均功率,当v为瞬时速度时,P为瞬时功率,因此求功率时要分清是求平均功率还是瞬时功率。对于力F与速度v不在同一直线时,不能直接用 而应用 。
3. 机械额定功率概念:机械正常工作时输出的最大功率。
4. 机车以恒定功率起动情况:P一定,v变大,F变小,a变小,当a=0时,v 不变,机车匀速运动,这时 ,而 为机车行驶的最大速度。
5. 机车以加速度a匀加速起动情况:a一定,F也一定,P随v增大而增大,当P达到 后,F、a不能维持,开始减小,但速度还要增大,直到 , 达最大 。
(三)动能,动能定理
1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。能量有各种不同的形式。
2. 功和能的关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
注意:功是过程量,能是状态量。
3. 动能定义:物体由于运动而具有的能叫做动能。
4. 动能表达式: 。
5. 注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J)。
6. 动能与动量的联系:∵ 和 ,∴
(注意:动量是矢量,两个矢量相同,必须要大小、方向相同)。
7. 动能定理的推导:设物体质量为m,初速度为 ,在与运动方向同向的恒定合外力F作用下,发生一段位移s,速度增加到 。
由 和 联立解得: 。
8. 动能定理公式: 。
注意:W为外力做功的代数和, 是物体动能的增量; 为正值时,说明物体动能增加, 为负值时,说明物体动能减少,涉及质点的位移与速度关系问题时,可优先考虑应用动能定理。
9. 应用动能定理进行解题的一般步聚:
(1)确定研究对象,明确它的运动过程;
(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;
(3)明确起始状态和终了状态的动能(可分段、亦可对整个运动过程)。
(4)用 列方程求解。
高一物理公式总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。
(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。
(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛 1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。
(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动 万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。
(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动 1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz) 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力 1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关) 2.万有引力定律F=Gm1m2/r^2 G=6.67*10^-11N·m^2/kg^2方向在它们的连线上 3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m) 4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2 5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s 6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。 机械能 1.功 (1)做功的两个条件: 作用在物体上的力. 物体在里的方向上通过的距离. (2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J) 1J=1N*m 当 0<= a 0 F做正功 F是动力 当 a=派/2 w=0 (cos派/2=0) F不作功 当 派/2<= a <派 W<0 F做负功 F是阻力 (3)总功的求法: W总=W1+W2+W3……Wn W总=F合Scosa 2.功率 (1) 定义:功跟完成这些功所用时间的比值. P=W/t 功率是标量 功率单位:瓦特(w) 此公式求的是平均功率 1w=1J/s 1000w=1kw (2) 功率的另一个表达式: P=Fvcosa 当F与v方向相同时, P=Fv. (此时cos0度=1) 此公式即可求平均功率,也可求瞬时功率 1)平均功率: 当v为平均速度时 2)瞬时功率: 当v为t时刻的瞬时速度 (3) 额定功率: 指机器正常工作时最大输出功率 实际功率: 指机器在实际工作中的输出功率 正常工作时: 实际功率≤额定功率 (4) 机车运动问题(前提:阻力f恒定) P=Fv F=ma+f (由牛顿第二定律得) 。
必修二全部 知识点 即公式 注意事项 (超全) 二、质点的运动(2)----曲线运动 万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移x= Vot 4.竖直方向位移(下落高度) y=?gt2 常常用高度h表示 5.运动时间t=根号下(2h/g) 6.合速度Vt=根号下(Vx2+Vy2) 合速度方向与水平夹角β: tanβ=Vy/Vx=gt/Vo 7.合位移 s=根号下(x2+ y2) 位移方向与水平夹角α: tanα=y/x=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h决定与水平抛出速度无关。 (3)β与α的关系为 tanβ=2tanα 。
(4)在平抛运动中时间t是解题关键。 (5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动 1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F向=mv2/R=mω2R=m(2π/T)2R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力 1.开普勒第三定律T2/R3=k R:轨道半径 T:周期 k:常量(与行星质量无关) 2.万有引力定律F=Gm1m2/r2 G=6.67*10^-11N·m2/kg2 方向在它们的连线上 3.天体上的重力和重力加速度 GMm/R2=mg g=GM/R2 R:天体半径(m) 4.卫星绕行速度、角速度、周期 V=根号下(GM/R) ω=根号下(GM/R3) T=根号下2π(R3/GM) 5.第一(二、三)宇宙速度 V1=根号下(g地r地)=7.9km/s V2=11.2km/s V3=16.7km/s 6.地球同步卫星 GMm/(R+h)2=m·4π2(R+h)/T2 h≈3.6 km h:距地球表面的高度注:(1)天体运动所需的向心力由万有引力提供,F心=F万。 (2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。 (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。机械能 1.功 (1)做功的两个条件: 作用在物体上的力. 物体在力的方向上通过的距离. (2)功的大小: W=F·s·cosa 功是标量 功的单位:焦耳(J) 1J=1N*m 当 0≤ a 2 w>0 F做正功 F是动力当 a=π/2 w=0 (cosπ/2=0) F不作功当 π/2≤ a。
再好的总结,还是要多花时间去看,去记,靠做题来巩固知识点
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz) 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67*10^-11N
必修二曲线运动:
最基本的题
1、根据公式计算角速度,线速度,周期等(题数较少)
2、最特殊的曲线运动,即匀速圆周运动常考的有 1)杆球模型2)绳球模型3)天体运动。这些题主要是受力分析。记住做物理题,最重要,最基本的就是正确的受力分析。1)2)种类型在做时,要搞清物体最高点处的受力,既是否受支持力或弹力。
3、运动学与曲线运动结合的题。注意用动能定理,机械能守恒和圆周运动的方程,以及牛顿第二定律等运动学公式,结合列方程。
4、很重要的一类题,类平抛运动。有竖直方向上的抛体运动,斜上或斜下的抛体运动。解题时应注意运用平抛运动中总结的归律。(同样适用)
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.867秒