掌握解题步骤是解答应用题的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。
一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。
这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的数量关系灵活运用,切不可死记硬背,机械地套用解题方法。
1归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。【数量关系】总量÷份数=1份数量1份数量*所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12*16=1.92(元) 列成综合算式0.6÷5*16=0.12*16=1.92(元) 答:需要1.92元。例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷?10*5*6=300(公顷) 列成综合算式90÷3÷3*5*6=10*30=300(公顷) 答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材?5*7=35(吨) (3)105吨钢材7辆汽车需要运几次?105÷35=3(次) 列成综合算式105÷(100÷5÷4*7)=3(次) 答:需要运3次。2归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1份数量*份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2*791=2531.2(米) (2)现在可以做多少套?2531.2÷2.8=904(套) 列成综合算式3.2*791÷2.8=904(套) 答:现在可以做904套。
例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24*12=288(页) (2)小明几天可以读完《红岩》?288÷36=8(天) 列成综合算式24*12÷36=8(天) 答:小明8天可以读完《红岩》。
例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50*30=1500(千克) (2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天) 列成综合算式50*30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。
3和差问题 【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】大数=(和+差)÷2 小数=(和-差)÷2 【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米) 长方形的面积=10*8=80(平方厘米) 答:长方形的面积为80平方厘米。例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知 甲袋化肥重量=(22+2)÷2=12(千克) 丙袋化肥重量=(22-2)÷2=10(千克) 乙袋化肥重量=32-12=20(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14*2+3),甲与乙的和是97,因此甲车筐数=(97+14*2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33筐。4和倍问题 【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数 总和-较小的数=较大的数 较小的数*几倍=较大的数 【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵) (2)桃树有多少棵?62*3=186(棵) 答:杏树有62棵,桃树有186棵。
例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨) (2)东库存粮数=480-200=280(吨) 答:东库存粮280吨,西库存粮200吨。例3甲站原有车52辆,乙站原有车32。
根据题意来解决问题,不论兴趣是否有,学生的学习效果在于学会,能够在见到类似题目时做到迎仞而解。要教会学生审题,选择合适的方法来解题,一般情况下就是让他们先弄明白每一句话的意思,可以运用语文方面的知识帮助他们来学会审题,小学应用题一般不会特别难,用正向解题方法可以解决大多数题目,当他们将每句话的意思都搞明白后,要教会他们将问题带到题目中去读,形成合理的思路。目的性这一点很重要。另外,还要根据题目的特点来选择合适的方法。
例如,有的题目就是用文字叙述的:小明的妈妈买了一些糖果,小明第一天吃了4颗,第二天比第一天少吃了一个,第三天比前两天的2倍少8颗,还剩3颗。问:小明的妈妈共买了多少颗糖?当学生先读到题目最后的问题时,他们就知道要解决的问题是什么,就有了明确的目的,将所有的条件都看过一遍后,发现只要将每句话给出的数字求出,然后相加就可得到结果。再例如:是一个图形题,会画出一个梯形,知道上底是12,下底比上底多6,高是5,问这个梯形的周长和面积。此时学生就要在确定目的同时确定方法,这个题目显然是个公式应用题,想得到答案必须要灵活地运用公式。还有就是常识问题,一角等于10分,一元等于10角,商品打85折就是按商品原价的85%来计帐,收入一成就是收入的10%,这些问题如果不能先搞清楚,可能会在列式时就已经做错了。
常用
解题方法
掌握解题步骤是解答
的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的
灵活运用,切不可死记硬背,机械地套用解题方法。 1.综合法
从已知条件出发,根据
先选择两个已知数量,提出可以解答的问题,然后把所求出的数量作为新的已知条件, 与其它的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止。这就是综合法。在运用综合法的过程中,把应用题的已知条件分解成可以依次解答的几个简单应用题。
网
例1.一个养鸡场一月份运出
13600只,二月份运出的
是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出多少只?
综合法的思路是:
算式:(13600+13600*2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份运出40000只。
另解:13600*(2+1)-800
=13600*3-800
=40800-800
=40000(只)
例2.工厂有一堆煤,原计划每天烧3吨,可以烧96天。由于改进烧煤方法,每天可节煤0.6吨,这样可以比原计划多烧几天?
解答这道题,综合法的思路是:
算式:3*96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原计划多烧24天
用心解救行了,不要考虑太多
小学的题都不难..
(一)1、六年级同学收集了180个易拉罐,其中的1/3是一班收集的,2/5是二班收集的。
两个班各收集多少个?(60、72)2、小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的1/2。小新体重多少千克?(41) 3、六年级三个班学生帮助图书室修补图书。
一班修补了54本,二班修补的本数是一班的5/6,三班修补的是二班的4/3。三班修补图书多少本?(60)4、小丽比小兰多12张彩色画片,这个数目正好相当于小兰画片张数的3/10。
小兰有多少张彩色画片? 小丽有多少张?(40、52)5、六年级有学生111人,相当于五年级学生人数的3/4。五年级和六年级一共有多少人?(259)6、小刚家买来一袋面粉,吃了15千克,正好是这袋面粉的3/4。
这袋面粉还剩多少千克?(20)7、光明小学美术组有30人,生物组的人数是美术组的1/3,航模组的人数是生物组的4/5。航模组有多少人?(8)8、某饲养场养了2400只鹅,鹅的只数是鸭的3/4,鸭的只数是鸡的4/5,饲养场养了多少只鸡?(4000)9.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。
原来每人存款多少(40) 以下供参考(二)1、一个长方体沙坑,长4米,宽2米,深0.5米,如果每立方米黄沙重1.4吨,这黄沙重多少吨?2、一个长方体,底面积是30平方分米,高3米,它的体积是多少立方分米?3、我们学校要粉刷教室,教室长8米,宽7米,高3.5米,扣除门窗、黑板的面积13.8平方米,已知每平方米需要5元涂料费。粉刷一个教室需要多少钱?4、一个商品盒是棱长为6厘米的正方体,在这个盒的四周贴上商标,贴商标的面积最大是多少平方厘米?5、把长8厘米,宽12厘米,高5厘米长方体木块锯成棱长2厘米的正方体木块,可锯多少块?6、一个底面是正方形的长方体木料,长是5米,把它截成4段,表面积增加36平方米,求长方体的体积?7. 一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?8、一个长方体铁皮水箱,长18分米,宽10分米,已知这个水箱最多可装水1620升,这个水箱有多深? 9、一个盛药水的长方体塑料箱,里面长是0.6米,宽0.25米,深0.5米,如果把这一整箱药水装入每瓶可装400毫升的小瓶中,这箱药水最少装多少瓶? 10、一个正方体钢坯棱长6分米,把它锻造成横截面是边长3厘米的正方形的长方体钢材,钢材长多少米?11、一个长方体油桶,底面积是18平方分米,它可装43.2千克油,如果每升油重0.8千克,油桶的高是多少分米? 12、在一只长25厘米,宽20厘米的玻璃缸中,有一块棱长10厘米的正方体铁块,这时水深15厘米,如果把这块铁块从缸中取出来,缸中的水深多少厘米? 13、一个长方体油箱,底面是一个正方形,从里面量边长是6分米。里面已盛油144升,已知里面油的深度是油箱深度的一半,这个油箱深多少分米? 14、一个房间内共铺设了1200块长40厘米,宽20厘米,厚2厘米的木地板,这个房间共占地多少平方米?铺这个房间共要木材多少立方米? 15..用长0.2米,宽0.1米的长方形砖铺一个大礼堂,需要1000块。
如果改用0.01平方米的方砖,需要砖多少块?16、用铁皮做一个无盖的长方体油桶,长和宽都是4分米,高6分米,用铁皮多少平方分米?桶内放汽油,每升油重0.82千克,这个油桶可装汽油多少千克? 17、胜利小学五年级3班体育达标人数是24人,没达标人数是12人,达标人数占全班人数的几分之几?18、甲乙两班共83人,乙丙两班共86人,丙甲两班共85人,甲乙两班各有多少人? 19、2头牛和4只羊一天共吃草27千克,6头牛和15只羊一天共吃草90千克,1头牛和1只羊一天共吃草多少千克?20、4.5升油和3.5升奶共重7.88千克,3升油和3升奶共重5.94千克,求一升油和一升奶各有多少千克?21、4个篮球和3个排球共用去141元,5个篮球和4个排球共用去180元,每个篮球和每个排球个多少元? 22、红球和黑球共有10个,红球和白球共有7个,黑球和白球共有5个,三种球各有多少个? 23.有甲 乙 丙三个人,甲每分钟走120米,乙每分钟走100米,丙每分钟走70米,如果三个人同时同向同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,三个人又可相遇?24、甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果3月5日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日? 25、光明小学五年级学生,分为7人一组、8人一组或6人一组排队做操,都恰好分完,五年级至少有多少学生?26. 一辆汽车,前3小时共行192千米,后2小时每小时行58千米,这辆汽车的平均速度是多少千米/时?27,一瓶油连瓶重3.4千克,用去一半后,连瓶还重1.9千克.原来有油多少千克 瓶重多少千克 ?28、园林工人在一段公路的两边每隔4米栽一棵树,一共栽了74棵。现在要改成每隔6米栽一棵树。
那么,不用移栽的树有多少棵? 三1. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达? 2.小。
解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路) 分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占 ,男工人比女工人多多少人?根据题意,可找出下列对应关系:总人数1350人单位“1”;男工人数 ,女工人数 ;男工人比女工人多的人数 .根据“单位1”的量*几分之几=对应数量,不难得出计算结果:(人).二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多 ,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多 ,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是 ;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加 .冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即 .四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.附题目:1、冰化成水,体积减少了1/11,现在有5立方分米的水,结成冰后,体积是多少立方分米?一块5立方分米的冰化成水后体积是多少立方分米?2、小明看一本故事书,第一天看的页数与总页数的比是3:7,如果再看15页,正好是这本书的一半,这本书有多少页?3、数学兴趣小组共有42人,其中女生占2/7,后来又增加了几名女生,这时女生占总人数的2/5,增加了多少名女生?4、两筐苹果共90千克,大筐的1/5与小筐的1/4共重20千克,大、小筐各装水果多少千克?。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.379秒