计算材料的能带结构即色散曲线E(k),步骤为(并以计算fcc结构Al的能带结构为例进行说明):
* 根据特殊k点的走向,选取特殊k点及特殊k点间的分割点数,准备好产生k点的输入文件syml
6 !特殊k点的个数
20 20 20 10 20 !特殊k点间的分割点数
X 0.5 0.0 0.5 !特殊k点的坐标,相对于倒格子矢量
G 0.0 0.0 0.0
L 0.5 0.5 0.5
W 0.5 0.25 0.75
K 0.375 0.375 0.75
G 0.0 0.0 0.0 !下面三行,前三列是正格子基矢,后三列是倒格子基矢
0.000000000 1.987500000 1.987500000 -0.251572327 0.251572327 0.251572327
1.987500000 0.000000000 1.987500000 0.251572327 -0.251572327 0.251572327
1.987500000 1.987500000 0.000000000 0.251572327 0.251572327 -0.251572327
-20.0 15.0 !在画能带结构时,每个特殊k点所对应的竖线的能量范围
7.068339 !费米能级
* 用程序gk.x产生k点,得到KPOINTS文件。
注释:程序gk.x是由gk.f文件编译后得到的目标文件,其输入文件为syml,输出文件为KPOINTS, inp.kpt。
* 紧接着利用前面计算得到的自洽电荷密度作一次非自洽的计算。
采用命令解压保存的电荷密度文件chg.tgz:tar xzvf chg.tgz
另外设置ISTART=1, ICHARG=11, 并增加NBANDS的值,ISMEAR采用默认值
SYSTEM = Al-fcc
ENCUT = 250
ISTART = 1; ICHARG = 11
#ISMEAR = -5
NBANDS = 12
PREC = Accurate
计算完后得到本征值文件EIGENVAL。
注意:对于4.4系列版本,在计算能带结构时设置NBANDS的值应该与计算自洽的电荷密度时设置的NBADS一致。对4.5以上版本,可以不一致。
* 从自洽电荷密度计算得到的OUTCAR文件中找到倒格子矢量和费米能级,并粘贴到syml文件中,然后用程序pbnd.x把EIGENVAL转换为成bnd.dat(本征值,并以费米能级为参考零点)和highk.dat(用来画竖线),然后用软件origin画图。
注释:程序pbnf.x是通过编译pbnd.f得到的可执行文件,其输入文件为EIGENVAL和
syml,输出文件为BANDS、bnd.dat和highk.dat。pbnd.f可以处理自旋极化情况下计算得到的 EIGENVAL,不再输出bnd.dat而是upbnd.dat和dnbnd.dat这两个文件,分别对应自旋向上和向下的能带。
提示:在计算能带结构时,采用ISMEAR = 0或1对结果的影响非常小,可以认为是一样的。但是不能采用ISMEAR = -5 或-4。
固体材料的能带结构由多条能带组成,能带分为传导带(简称导带)、价电带(简称价带)和禁带等,导带和价带间的空隙称为能隙。
能带结构可以解释固体中导体、半导体、绝缘体三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。
一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下 电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 所有固体物质都是由原子组成的,而原子则由原子核和电子组成。原子核外的电子在以原子核为中心的圆形轨道上运动,距离原子核越远的轨道其能级(电位能的级别)越高,电子也就越容易脱离原子的束缚,变成可以运动的自由电子。这有点像手上的风筝,放得越高,其运动能量越大,挣脱线的束缚的可能性越大。所以,最外层的电子最活跃,决定了与其他原子结合的方式(化学键),决定了该元素的化学性质,也就决定了该原子的价值,因此被称作为“价电子”。以硅原子为例,其原子核外有14个电子,以“2、8、4”的数量分布在三个轨道上,里面2和8个电子是稳定的,而外部的4个电子状态容易发生变化,因此其物理、化学特性就与它的4个价电子强相关。原子的电子状态决定了物质的导电特性,而能带就是在半导体物理中用来表征电子状态的一个概念。在固体电子学中有一套能带理论,便于研究固体(包括半导体)物质内部微观世界的规律。
当原子处于孤立状态时,其电子能级可以用一根线来表示;当若干原子相互靠近时,能级组成一束线;当大量原子共存于内部结构规律的晶体中时,密集的能级就变成了带状,即能带。能带中的电子按能量从低到高的顺序依次占据能级。下面是绝缘体、半导体和金属导体的能带结构示意图。最下面的是价带,是在存在电子的能带中,能量最高的带;最上面是导带,一般是空着的;价带与导带之间不存在能级的能量范围就叫做禁带,禁带的宽度叫做带隙(能隙)。绝缘体的带隙很宽,电子很难跃迁到导带形成电流,因此绝缘体不导电。金属导体只是价带的下部能级被电子填满,上部可能未满,或者跟导带有一定的重叠区域,电子可以自由运动,即使没有重叠,其带隙也是非常窄的,因此很容易导电。而半导体的带隙宽度介于绝缘体和导体之间,其价带是填满的,导带是空的,如果受热或受到光线、电子射线的照射获得能量,就很容易跃迁到导带中,这就是半导体导电并且其导电性能可被改变的原理。
由于半导体的带隙窄,电子容易发生跃迁,因而导电性能容易发生大的变化;电子状态的变化还可能带来其他效应,比如从高能级到低能级跃迁过程中多余的能量以光子的形式释放,则产生“发光”现象。独特的能带结构,正是半导体具有百变魔力之源。
能带理论跟之前的比较具象的电子移动的理论根本不同吧,何来“什么形状”之说?能带本质是能级的重叠,能级还有形状吗?具体来说:
1、内部电子应该不会分裂成能带,因为能带理论是用来解释导电性等物理特性的理论,参与讨论的必须是价电子、以及受激电子,内部电子一般不考虑,所以不存在会不会分裂成能带的问题;
2、按照理论来说,应该是N越大,能带就越宽,也就是处于成键轨道和反键轨道的电子越多,但是此事应该以事实为基础,理论不见得正确,有可能观察到的现象并不是这样;
3、这个我不敢确定,硅的1S和2P?这个不是价电子啊。硅的3S能带全满,3P能带不满也不空,硅半导体的禁带能量不大,电子可从价带跃迁到导带。至于1S和2P的能级分裂,恕在下无能为力;
4、两个硅原子?能带理论针对的是大量的原子,只有大量原子的轨道重叠才能形成类似一条连续的能量带一样的“能带”,讨论两个硅原子似乎没什么意义,不过大约就是金属分子轨道理论里一样,轨道简并就好,但是应该不能称为“能带”。
5、老实说,不知道。主要是不明白跟内层电子有什么联系……
对于这个理论我也实在一知半解,这种问题其实我觉得应该问问化学院的老师们(如果你是学生,不过我估计老师们也可能会有不同的见解),或者查查历史上相关实验和资料的文档。
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.248秒